An experimental investigation was carried out on the influence of solid inclusions (nonmetallic particles with sizes from a few tens to hundreds of micrometers) on water droplet evaporation during motion through high-temperature gases (more than 1000 K). Optical methods for diagnostics of two-phase (gas and vapor–liquid) flows (particle image velocimetry (PIV) and interferometric particle imaging (IPI)) were used. It was established that introducing foreign solid particles into the water droplets intensifies evaporation rate in high-temperature gas severalfold. Dependence of liquid evaporation on sizes and concentration of solid inclusion were obtained.

References

References
1.
Ozar
,
B.
,
Dixit
,
A.
,
Chen
,
S. W.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2012
, “
Interfacial Area Concentration in Gas–Liquid Bubbly to Churn-Turbulent Flow Regime
,”
Int. J. Heat Fluid Flow
,
38
, pp.
168
179
.
2.
Mahmoudi
,
S. R.
,
Adamiak
,
K.
, and
Peter Castle
,
G. S.
,
2013
, “
Two-Phase Cooling Characteristics of Mono-Dispersed Droplets Impacted on an Upward-Facing Heated Disk
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
312
322
.
3.
Gupta
,
M.
,
Pasi
,
A.
,
Ray
,
A.
, and
Kale
,
S. R.
,
2013
, “
An Experimental Study of the Effects of Water Mist Characteristics on Pool Fire Suppression
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
768
778
.
4.
Avdeev
,
A. A.
, and
Zudin
,
Yu. B.
,
2012
, “
Kinetic Analysis of Intensive Evaporation (Method of Reverse Balances)
,”
High Temp.
,
50
(
4
), pp.
527
535
.
5.
Hertz
,
H.
,
1882
, “
Ueber die Verdunstung der Flussigkeiten, Inbesondere des Quecksilbers, im luftleeren Raume
,”
Ann. Phys. Chem.
,
253
(
10
), pp.
177
193
.
6.
Knudsen
,
M.
,
1915
, “
Die maximale Verdampfungsgeschwindigkeit des Quecksilbers
,”
Ann. Phys.
,
352
(
13
), pp.
697
708
.
7.
Narvaez
,
J. A.
,
Veydt
,
A. R.
, and
Wilkens
,
R. J.
,
2014
, “
Evaluation of Nanofluids as Potential Novel Coolant for Aircraft Applications: The Case of De-Ionized Water-Based Alumina Nanofluids
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051702
.
8.
Fang
,
X.
,
Ding
,
Q.
,
Fan
,
L. W.
,
Yu
,
Z. T.
,
Xu
,
X.
,
Cheng
,
G. H.
,
Hu
,
Y. C.
, and
Cen
,
K. F.
,
2014
, “
Thermal Conductivity Enhancement of Ethylene Glycol-Based Suspensions in the Presence of Silver Nanoparticles of Various Shapes
,”
ASME J. Heat Transfer
,
136
(
3
), p.
034501
.
9.
Wu
,
W.
,
Bostanci
,
H.
,
Chow
,
L. C.
,
Hong
,
Y.
,
Ding
,
S. J.
,
Su
,
M.
, and
Kizito
,
J. P.
,
2013
, “
Jet Impingement Heat Transfer Using Air-Laden Nanoparticles With Encapsulated Phase Change Materials
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052202
.
10.
Damaschke
,
N.
,
Nobach
,
H.
, and
Tropea
,
C.
,
2002
, “
Optical Limits of Particle Concentration for Multi-Dimensional Particle Sizing Techniques in Fluid Mechanics
,”
Exp. Fluids
,
32
(
2
), pp.
143
152
.
11.
Del Pino
,
C.
,
Parras
,
L.
,
Felli
,
M.
, and
Fernandez-Feria
,
R.
,
2011
, “
Structure of Trailing Vortices: Comparison Between Particle Image Velocimetry Measurements and Theoretical Models
,”
Phys. Fluids
,
23
(
1
), p.
013602
.
12.
Volkov
,
R. S.
,
Kuznetsov
,
G. V.
, and
Strizhak
,
P. A.
,
2014
, “
The Influence of Initial Sizes and Velocities of Water Droplets on Transfer Characteristics at High-Temperature Gas Flow
,”
Int. J. Heat Mass Transfer
,
79
, pp.
838
845
.
13.
Kuznetsov
,
G. V.
, and
Strizhak
,
P. A.
,
2010
, “
On the Possibility of Using a One-Dimensional Model for Numerical Analysis of the Ignition of a Liquid Condensed Material by a Single Heated Particle
,”
Combust., Explos. Shock Waves
,
46
(
6
), pp.
683
689
.
14.
Dubrovskii
,
V. V.
,
Podvysotskii
,
A. M.
, and
Shraiber
,
A. A.
,
1990
, “
Measuring Natural Oscillation Periods for Droplets and Two-Component Particles
,”
J. Eng. Phys. Thermophys.
,
58
(
5
), pp.
622
625
.
15.
Glushkov
,
D. O.
,
Kuznetsov
,
G. V.
, and
Strizhak
,
P. A.
,
2014
, “
Numerical Investigation of Water Droplets Shape Influence on Mathematical Modeling Results of Its Evaporation in Motion Through a High-Temperature Gas
,”
Math. Probl. Eng.
,
2014
, p.
920480
.
You do not currently have access to this content.