Based on one-dimensional analysis of heat conduction, a general formula for the effective stagnant thermal conductivity of spatially periodic porous media is derived without assuming local thermal equilibrium. Furthermore, we discuss the contribution of the contact area between particles to the effective stagnant thermal conductivity in detail, and the modification of the formula is proposed to predict the actual effective stagnant thermal conductivity for the porous media. The present results are in good agreement with experimental results of Nozad et al. (1985, “Heat Conduction in Multi-Phase Systems I: Theory and Experiments for Two-Phase Systems,” Chem. Eng. Sci., 40(5), pp. 843–855) for a packed-sphere bed.

References

References
1.
Nozad
,
I.
,
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1985
, “
Heat Conduction in Multi-Phase Systems I: Theory and Experiments for Two-Phase Systems
,”
Chem. Eng. Sci.
,
40
(
5
), pp.
843
855
.
2.
Kunii
,
D.
, and
Smith
,
J. M.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
78
.
3.
Hadley
,
G. R.
,
1986
, “
Thermal Conductivity of Packed Metal Powders
,”
Int. J. Heat Mass Transfer
,
29
(
6
), pp.
909
920
.
4.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
,
1995
, “
A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
264
269
.
5.
Yang
,
C.
, and
Nakayama
,
A.
,
2010
, “
A Synthesis of Tortuosity and Dispersion in Effective Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3222
3230
.
6.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
, Chap. 3.
7.
Slattery
,
J. C.
,
1999
,
Advanced Transport Phenomena
,
Cambridge University Press
,
Cambridge, UK
, Chap. 7.
8.
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1984
, “
Heat and Mass Transfer in Porous Media
,”
Fundamentals of Transport Phenomena in Porous Media
, Vol. 82,
Martinus Nijhoff Publishers
,
Leiden, The Netherlands
, pp.
121
198
.
9.
Gray
,
W. G.
,
Leijnse
,
A.
,
Kolar
,
R. L.
, and
Blain
,
C. A.
,
1993
,
Mathematical Tools for Changing Scale in the Analysis of Physical Systems
,
CRC Press
,
Boca Raton, FL
, Chap. 4.
10.
Ogawa
,
K.
,
Matsuka
,
T.
,
Hirai
,
S.
, and
Okazaki
,
K.
,
2001
, “
Three-Dimensional Velocity Measurement of Complex Interstitial Flows Through Water-Saturated Porous Media by the Tagging Method in the MRI Technique
,”
Meas. Sci. Technol.
,
12
(
2
), pp.
172
180
.
11.
Kishimoto
,
M.
,
Iwai
,
H.
,
Saito
,
M.
, and
Yoshida
,
H.
,
2011
, “
Quantitative Evaluation of Solid Oxide Fuel Cell Porous Anode Microstructure Based on Focused Ion Beam and Scanning Electron Microscope Technique and Prediction of Anode Overpotentials
,”
J. Power Sources
,
196
(
10
), pp.
4555
4563
.
12.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2001
, “
The Interaction of Thermal Nonequilibrium and Heterogeneous Conductivity Effects in Forced Convection in Layered Porous Channels
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4369
4373
.
13.
Shonnard
,
D.
, and
Whitaker
,
S.
,
1989
, “
The Effective Thermal Conductivity for a Point Contact Porous Medium: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
503
512
.
14.
Sahraoui
,
M.
, and
Kaviany
,
M.
,
1993
, “
Slip and No-Slip Temperature Boundary Conditions at Interface of Porous, Plain Media: Conduction
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
1019
1033
.
You do not currently have access to this content.