The electro-osmotic flow (EOF) and associated heat transfer are investigated in a semi-annular microcapillary. The potential, velocity, and temperature fields are solved by analytic approaches including the eigenfunction expansion and the Green’s function methods. By selecting the potential sign of each surface of the channel, the bulk fluid may flow in two opposite directions. Effects of the key parameters governing the problem are examined. The mass flow rate increases when the hydraulic diameter is increased or the electrokinetic radius is decreased. The results reveal that surface cooling and/or surface heating (of the inner or outer walls) strongly affects the fluid temperature distributions as well as the position of the maximum/minimum temperature region inside the domain; the latter indicates temperature gradients in fluid. Also, higher thermal scale ratio leads to broaden the temperature distribution. Depending on the value of the geometric radius ratio (and for all values of the thermal scale ratio), the fully developed Nusselt number approaches a specific value as the electrokinetic radius tends to infinity.

References

References
1.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Boston, MA
.
2.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press
,
New York
.
3.
Kirby
,
B. J.
,
2010
,
Micro- and Nanoscale Fluid Mechanics
,
Cambridge University Press
,
New York
.
4.
Oertel
,
H.
,
2010
,
Prandtl-Essentials of Fluid Mechanics
,
Springer
,
New York.
5.
Ajdari
,
A.
,
1995
, “
Electro-Osmosis on Inhomogeneously Charged Surfaces
,”
Phys. Rev. Lett.
,
75
(
4
), pp.
755
758
.
6.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electro-Osmotic Pumping
,”
Colloids Surf. A
,
161
(
1
), pp.
89
102
.
7.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
,
73
(
9
), pp.
1979
1986
.
8.
Tang
,
G. H.
,
Li
,
X. F.
, and
Tao
,
W. Q.
,
2010
, “
Microannular Electro-Osmotic Flow With the Axisymmetric Lattice Boltzmann Method
,”
J. Appl. Phys.
,
108
(
11
), p.
114903
.
9.
Wang
,
M.
, and
Kang
,
Q.
,
2010
, “
Modeling Electrokinetic Flows in Microchannels Using Coupled Lattice Boltzmann Methods
,”
J. Comput. Phys.
,
229
(
3
), pp.
728
744
.
10.
Xuan
,
X. C.
, and
Li
,
D.
,
2005
, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
,
289
(
1
), pp.
291
303
.
11.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
(
20
), pp.
2203
2221
.
12.
Tsao
,
H. K.
,
2000
, “
Electroosmotic Flow Through an Annulus
,”
J. Colloid Interface Sci.
,
225
(
1
), pp.
247
250
.
13.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials
,”
J. Colloid Interface Sci.
,
253
(
2
), pp.
285
294
.
14.
Wang
,
C. Y.
,
Liu
,
Y. H.
, and
Chang
,
C. C.
,
2008
, “
Analytical Solution of Electro-Osmotic Flow in a Semicircular Microchannel
,”
Phys. Fluids
,
20
(
6
), p.
063105
.
15.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of AC Electro-Osmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
(
13
), pp.
5421
5430
.
16.
Studer
,
V.
,
Pepin
,
A.
,
Chen
,
Y.
, and
Ajdari
,
A.
,
2002
, “
Fabrication of Microfluidic Devices for AC Electrokinetic Fluid Pumping
,”
Microelectron. Eng.
,
61–62
, pp.
915
920
.
17.
Moghadam
,
A. J.
,
2012
, “
An Exact Solution of AC Electro-Kinetic-Driven Flow in a Circular Micro-Channel
,”
Eur. J. Mech. B/Fluids
,
34
, pp.
91
96
.
18.
Moghadam
,
A. J.
,
2013
, “
Exact Solution of AC Electro-Osmotic Flow in a Microannulus
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091201
.
19.
Moghadam
,
A. J.
,
2014
, “
Effect of Periodic Excitation on Alternating Current Electro-Osmotic Flow in a Microannular Channel
,”
Eur. J. Mech. B/Fluids
,
48
, pp.
1
12
.
20.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1359
1369
.
21.
Chen
,
C.-H
,
2009
, “
Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nonochannels With Joule Heating
,”
ASME J. Heat Transfer
,
131
(
2
), p.
022401
.
22.
Moghadam
,
A. J.
,
2013
, “
Electrokinetic-Driven Flow and Heat Transfer of a Non-Newtonian Fluid in a Circular Microchannel
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021705
.
23.
Moghadam
,
A. J.
,
2014
, “
Thermally Developing Flow Induced by Electro-Osmosis in a Circular Micro-Channel
,”
Arab. J. Sci. Eng.
,
39
(
2
), pp.
1261
1270
.
24.
Moghadam
,
A. J.
,
2015
, “
Thermal Characteristics of Time-Periodic Electro-Osmotic Flow in a Circular Microchannel
,”
Heat Mass Transfer
(in press).
25.
Tabeling
,
P.
,
2005
,
Introduction to Microfluidics
,
Oxford University Press
,
New York
.
26.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
27.
Haberman
,
R.
,
1987
,
Elementary Applied Partial Differential Equations
,
Prentice-Hall
,
Upper Saddle River, NJ
.
28.
Arfken
,
G. B.
, and
Weber
,
H. J.
,
2005
,
Mathematical Methods for Physicists
,
Elsevier
,
San Diego, CA
.
You do not currently have access to this content.