We present results of modeling for the design of microgaps for the removal of high heat fluxes via a strategy of high mass flux, high quality, and two-phase forced convection. Modeling includes (1) thermodynamic analysis to obtain performance trends across a wide range of candidate coolants, (2) evaluation of worst-case pressure drop due to contraction and expansion in inlet/outlet manifolds, and (3) 1D reduced-order simulations to obtain realistic estimates of different contributions to the pressure drops. The main result is the identification of a general trend of improved heat transfer performance at higher system pressure.

References

References
1.
Bar-Cohen
,
A.
,
Wang
,
P.
, and
Rahim
,
E.
,
2007
, “
Thermal Management of High Heat Flux Nanoelectronic Chips
,”
Microgravity Sci. Technol.
,
19
(
3
), pp.
48
52
.
2.
Mahajan
,
C.
,
Chia-pin
,
C.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.
3.
Shein
,
E.
,
2013
, “
Keeping Computers Cool From the Inside
,”
Commun. ACM
,
56
(
7
), pp.
13
16
.
4.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
5.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y. J.
, and
Lim
,
S. K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041009
.
6.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.
7.
Bar-Cohen
,
A.
,
Sheehan
,
J. R.
, and
Rahim
,
E.
,
2012
, “
Two-Phase Thermal Transport in Microgap Channels-Theory, Experimental Results, and Predictive Relations
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.
8.
Qu
,
W. L.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.
9.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
(
2
), pp.
213
224
.
10.
Park
,
J. E.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2009
, “
Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks
,”
25th
SEMI-THERM
, San Jose, CA, Mar. 15–19, pp.
1
8
.
11.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
335
347
.
12.
Thome
,
J. R.
,
2006
, “
State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
9
), pp.
4
19
.
13.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2008
, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
187
227
.
14.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2004
, “
An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
86
93
.
15.
Thome
,
J. R.
, and
Consolini
,
L.
,
2010
, “
Mechanisms of Boiling in Micro-Channels: Critical Assessment
,”
Heat Transfer Eng.
,
31
(
4
), pp.
288
297
.
16.
Klein
,
S.
, and
Alvarado
,
F.
,
2002
,
Engineering Equation Solver
,
F-Chart Software
,
Madison, WI
.
17.
Wallis
,
G. B.
,
1980
, “
Critical Two-Phase Flow
,”
Int. J. Multiphase Flow
,
6
(
1–2
), pp.
97
112
.
18.
Kim
,
D. W.
,
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Han
,
B.
,
2008
, “
Thermofluid Characteristics of Two-Phase Flow in Micro-Gap Channels
,”
11th IEEE Intersociety Conference on Thermal Thermomechanical Phenomena in Electronic Systems
(
I-THERM
), Orlando, FL, May 28–31, pp.
979
992
.
19.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.
20.
Consolini
,
L.
, and
Thome
,
J. R.
,
2009
, “
Micro-Channel Flow Boiling Heat Transfer of R-134a, R236fa, and R-245fa
,”
Microfluid. Nanofluid.
,
6
(
6
), pp.
731
746
.
21.
Marcinichen
,
J. B.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2010
, “
Cooling of Microprocessors With Micro-Evaporation: A Novel Two-Phase Cooling Cycle
,”
Int. J. Refrig.
,
33
(
7
), pp.
1264
1276
.
22.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
23.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications—Part I: Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
928
940
.
24.
Thome
,
J. R.
,
2004
,
Engineering Data Book III
,
Wolverine Tube, Inc.
,
Decatur, AL
, Chap. 17.
You do not currently have access to this content.