In this paper, the radiative properties of electron beam physical vapor deposition (EB-PVD) and air plasma sprayed (APS) partially yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) have been comparatively studied for the first time by measuring the spectral diffuse reflectance and transmittance in a broad spectral band ranging from 250 nm to 15 μm. The radiation transfer mechanisms inside the coatings are explored based on the experimental data and theoretical model. The results indicate that the distinctive micronanostructures of APS and EB-PVD coatings have an important effect on the radiative heat transfer. In particular, the larger grain boundary and the total porosity strongly affect the volume scattering properties of the coatings, and the scattering coefficient is closely related to the arrangement of grain boundary as well as the pore architecture (i.e., its size, morphology, and its distribution). Compared to the laminar microstructure of APS TBCs, the columnar microstructure of EB-PVD freestanding coatings exhibits a higher transmittance, a lower reflectance, and a larger absorption in the spectral region from 400 nm to 10 μm, which leads to an increase of the total heat flux. By modifying the microstructure of TBCs properly, the radiative heat flux can be reduced and thereby providing a better thermal protection for the metallic substrate.

References

1.
Robert
,
A. M.
,
1987
, “
Current Status of Thermal Barrier Coatings—An Overview
,”
Surf. Coat. Technol.
,
30
(
1
), pp.
1
11
.10.1016/0257-8972(87)90003-X
2.
Miller
,
R. A.
,
1997
, “
Thermal Barrier Coatings for Aircraft Engines: History and Directions
,”
J. Therm. Spray Technol.
,
6
(
1
), pp.
35
42
.10.1007/BF02646310
3.
Gleeson
,
B.
,
2006
, “
Thermal Barrier Coatings for Aeroengine Applications
,”
J. Propul. Power
,
22
(
2
), pp.
375
383
.10.2514/1.20734
4.
Bose
,
S.
, and
DeMasi-Marcin
,
J.
,
1997
, “
Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney
,”
J Therm. Spray Technol.
,
6
(
1
), pp.
99
104
.10.1007/BF02646318
5.
Cao
,
X. Q.
,
Vassen
,
R.
, and
Stoever
,
D.
,
2004
, “
Ceramic Materials for Thermal Barrier Coatings
,”
J. Eur. Ceram. Soc.
,
24
(
1
), pp.
1
10
.10.1016/S0955-2219(03)00129-8
6.
Beele
,
W.
,
Marijnissen
,
G.
, and
Lieshout
,
A. V.
,
1999
, “
The Evolution of Thermal Barrier Coatings—Status and Upcoming Solution for Today's Key Issues
,”
Surf. Coat. Technol.
,
120
(
1
), pp.
61
67
.10.1016/S0257-8972(99)00342-4
7.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.10.1126/science.1068609
8.
Pawlowski
,
L.
,
1985
, “
Structure-Thermal Properties—Relationship in Plasma Sprayed Zirconia Coatings
,”
J. Vac. Sci. Technol.
,
3
(
6
), pp.
2494
2500
.10.1116/1.572865
9.
Altun
,
Ö.
, and
Böke
,
Y.
,
2009
, “
Effect of the Microstructure of EB-PVD Thermal Barrier Coatings on the Thermal Conductivity and the Methods to Reduce the Thermal Conductivity
,”
Arch. Mater. Sci. Eng.
,
40
(
1
), pp.
47
52
.
10.
Peters
,
M.
,
Leyens
,
C.
,
Schulz
,
U.
, and
Kaysser
,
W. A.
,
2001
, “
EB-PVD Thermal Barrier Coatings for Aeroengines and Gas Turbines
,”
Adv. Eng. Mater.
,
3
(
4
), pp.
193
204
.10.1002/1527-2648(200104)3:4<193::AID-ADEM193>3.0.CO;2-U
11.
Schulz
,
U.
,
Saruhan
,
B.
,
Fritscher
,
K.
, and
Leyens
,
C.
,
2004
, “
Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications
,”
Int. J. Appl. Ceram. Technol.
,
1
(
4
), pp.
302
315
.10.1111/j.1744-7402.2004.tb00182.x
12.
Schulz
,
U.
,
Leyens
,
C.
,
Fritscher
,
K.
,
Peters
,
M.
,
Saruhan-Brings
,
B.
,
Lavigne
,
O.
,
Dorvaux
,
J.-M.
,
Poulain
,
M.
,
Mévrel
,
R.
, and
Caliez
,
M.
,
2003
, “
Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings
,”
Aerosp. Sci. Technol.
,
7
(
1
), pp.
73
80
.10.1016/S1270-9638(02)00003-2
13.
Schulz
,
U.
,
Fritscher
,
K.
,
Leyens
,
C.
, and
Peters
,
M.
,
2002
, “
Influence of Processing on Microstructure and Performance of Electron Beam Physical Vapor Deposition (EB-PVD) Thermal Barrier Coatings
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
229
234
.10.1115/1.1447238
14.
Nicholls
,
J. R.
,
Lawson
,
K. J.
,
Johnstone
,
A.
, and
Rickerby
,
D. S.
,
2002
, “
Methods to Reduce the Thermal Conductivity of EB-PVD TBCs
,”
Surf. Coat. Technol.
,
151-152
, pp.
383
391
.10.1016/S0257-8972(01)01651-6
15.
Rätzer-Scheibe
,
H. J.
,
Schulz
,
U.
, and
Krell
,
T.
,
2006
, “
The Effect of Coating Thickness on The Thermal Conductivity of EB-PVD PYSZ Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
200
(
18-19
), pp.
383
391
.10.1016/j.surfcoat.2005.07.109
16.
Klemens
,
P. G.
, and
Gell
,
M.
,
1998
, “
Thermal Conductivity of Thermal Barrier Coatings
,”
Mater. Sci Eng.
,
245
(
2
), pp.
143
149
.10.1016/S0921-5093(97)00846-0
17.
Wahiduzzaman
,
T.
, and
Morel
,
T.
,
1992
, “
Effect of Translucence of Engineering Ceramics on Heat Transfer
,” Oak Ridge National Laboratory, Oak Ridge, TN.
18.
Makino
,
T.
,
Kunitomo
,
T.
,
Sakai
,
I.
, and
Kinoshita
,
H.
,
1984
, “
Thermal Radiation Properties of Ceramic Materials
,”
Heat Transfer Jpn. Res.
,
13
(
4
), pp.
33
50
.
19.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
M. P.
,
2010
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC
,
Boca Raton, FL
.
20.
Golosnoy
,
I.
,
Cipitria
,
A.
, and
Clyne
,
T.
,
2009
, “
Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work
,”
J. Therm. Spray Technol.
,
18
(
5-6
), pp.
809
821
.10.1007/s11666-009-9337-y
21.
Dombrovsky
,
L. A.
, and
Baillis
,
D.
,
2010
,
Thermal Radiation in Disperse Systems: An Engineering Approach
,
Begell House
,
New York
.
22.
Dombrovsky
,
L. A.
,
2012
, “
The Use of Transport Approximation and Diffusion-Based Models in Radiative Transfer Calculation
,”
Comput. Therm. Sci.
,
4
(
4
), pp.
297
315
.10.1615/ComputThermalScien.2012005050
23.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
24.
Stuke
,
A.
,
Kassner
,
H.
,
Marqués
,
J. L.
,
Vassen
,
R.
,
Stöver
,
D.
, and
Carius
,
R.
,
2012
, “
Suspension and Air Plasma-Sprayed Ceramic Thermal Barrier Coatings With High Infrared Reflectance
,”
Int. J. Appl. Ceram. Technol.
,
9
(
3
), pp.
561
574
.10.1111/j.1744-7402.2011.02689.x
25.
Yang
,
G.
, and
Zhao
,
C. Y.
, “
Experimental Study of Wide-Range Spectral Radiation Properties of Air Palsma Sprayed Thermal Barrier Coatings
,”
Proceedings of the ASME 2013 4th Micro/Nanoscale Heat and Mass Transfer International Conference
,
Hong Kong, China
,
2013
.
26.
Zhang
,
B. J.
,
Wang
,
B. X.
, and
Zhao
,
C. Y.
,
2014
, “
Microstructural Effect on the Radiative Properties of YSZ Thermal Barrier Coatings (TBCs)
,”
Int. J. Heat Mass Transfer
,
73
, pp.
59
66
.10.1016/j.ijheatmasstransfer.2014.01.063
27.
Dombrovsky
,
L. A.
,
Tagne
,
H. K.
,
Baillis
,
D.
, and
Gremillard
,
L.
,
2007
, “
Near-Infrared Radiative Properties of Porous Zirconia Ceramics
,”
Infrared Phys. Technol.
,
51
(
1
), pp.
44
53
.10.1016/j.infrared.2006.11.003
28.
Dombrovsky
,
L. A.
,
2006
, “
Modified Two-Flux Approximation for Identification of Radiative Properties of Absorbing and Scattering Media From Directional-Hemispherical Measurements
,”
J. Opt. Soc. Am.
,
23
(
1
), pp.
91
98
.10.1364/JOSAA.23.000091
29.
Schulz
,
U.
, and
Schmücker
,
M.
,
2000
, “
Microstructure of ZrO2 Thermal Barrier Coatings Applied by EB-PVD
,”
Mater. Sci. Eng. A
,
276
(
1-2
), pp.
1
8
.10.1016/S0921-5093(99)00576-6
30.
Singh
,
J.
, and
Wolfe
,
D. E.
,
2002
, “
Architecture of Thermal Barrier Coatings Produced by ElectronBeam-Physical Vapor Deposition (EB-PVD)
,”
J. Mater. Sci. Technol.
,
37
, pp.
3261
3267
.
31.
Unal
,
O.
,
Mitchell
,
T. E.
, and
Heuer
,
A. H.
,
1994
, “
Microstructures of Y2O3-Stabilized ZrO2 Electron Beam-Physical Vapor Deposition Coatings on Ni-Base Superalloys
,”
J. Am. Ceram. Soc.
,
77
(
4
), pp.
984
992
.10.1111/j.1151-2916.1994.tb07256.x
32.
Kulkarni
,
A. A.
,
Herman
,
H.
,
Almer
,
J.
,
Lienert
,
U.
,
Haeffner
,
D.
,
Ilavsky
,
J.
,
Fang
,
S.
, and
Lawton
,
P.
,
2004
, “
Depth Resolved Porosity Investigation of EB-PVD Thermal Barrier Coatings Using High Energy X-rays
,”
J. Am. Ceram. Soc.
,
87
(
2
), pp.
268
274
.10.1111/j.1551-2916.2004.00268.x
33.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Measurements of Thermal Radiation in Ultralight Metal Foams With Open Cells
,”
Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci.
,
218
, pp.
1297
1307
.
34.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Thermal Radiation in Ultralight Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
47
(
14-16
), pp.
2927
2939
.10.1016/j.ijheatmasstransfer.2004.03.006
35.
Lu
,
T. J.
,
Levi
,
C. G.
,
Wadley
,
H.-N. G.
, and
Evans
,
A. G.
,
2001
, “
Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition
,”
J. Am. Ceram. Soc.
,
84
(
12
), pp.
2937
2946
.10.1111/j.1151-2916.2001.tb01118.x
36.
Guo
,
H. B.
,
Vaßen
,
R.
, and
Stöver
,
D.
,
2005
, “
Thermophysical Properties and Thermal Cycling Behavior of Plasma Sprayed Thick Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
192
(
1
), pp.
48
56
.10.1016/j.surfcoat.2004.02.004
37.
Ahmaniemi
,
S.
,
Vuoristo
,
P.
,
Mäntylä
,
T.
,
Cernuschi
,
F.
, and
Lorenzoni
,
L.
,
2004
, “
Modified Thick Thermal Barrier Coatings: Thermophysical Characterization
,”
J. Eur. Ceram. Soc.
,
24
(
9
), pp.
2669
2679
.10.1016/j.jeurceramsoc.2003.08.016
38.
Pecharromán
,
C.
,
Ocaña
,
M.
, and
Serna
,
C. J.
,
1996
, “
Optical Constants of Tetragonal and Cubic Zirconias in the Infrared
,”
J. Appl. Phys
,
80
(
6
), pp.
3479
3483
.10.1063/1.363218
39.
Heiroth
,
S.
,
Ghisleni
,
R.
,
Lippert
,
T.
,
Michler
,
J.
, and
Wokaun
,
A.
,
2011
, “
Optical and Mechanical Properties of Amorphous and Crystalline Yttria-Stabilized Zirconia Thin Films Prepared by Pulsed Laser Deposition
,”
Acta Mater.
,
59
(
6
), pp.
2330
2340
.10.1016/j.actamat.2010.12.029
40.
Conlon
,
D.
, and
Doyle
,
W. P.
,
1965
, “
Absorption Spectra of Zirconium and Hafnium Dioxides
,”
J. Chem. Res.
,
42
(
12
), p.
4315
.
41.
Fang
,
X.
,
Zhao
,
C. Y.
, and
Bao
,
H.
,
2014
, “
Radiative Behaviors of Crystalline Silicon Nanowire and Nanohole Arrays for Photovoltaic Applications
,”
J. Quant. Spectrosc. Radiat.
,
133
, pp.
579
588
.10.1016/j.jqsrt.2013.09.021
42.
Vargas
,
W.
, and
Niklasson
,
G.
,
1997
, “
Applicability Conditions of the Kubelka-Munk Theory
,”
Appl. Opt.
,
36
(
22
), pp.
5580
5586
.10.1364/AO.36.005580
43.
Latimer
,
P.
, and
Noh
,
S.
,
1987
, “
Light Propagation in Moderately Dense Particle Systems: a Reexamination of the Kubelka-Munk Theory
,”
Appl Opt.
,
26
(
3
), pp.
514
523
.10.1364/AO.26.000514
44.
Alexander
,
A. K.
,
2007
, “
Physical Interpretation and Accuracy of the Kubelka–Munk Theory
,”
J. Phys. D: Appl. Phys.
,
40
(
7
), pp.
2210
2216
.10.1088/0022-3727/40/7/053
45.
Ishimaru
,
A.
,
1978
,
Wave Propagation and Scattering in Random Media
,
Academic
,
New York
.
46.
Dombrovsky
,
L. A.
,
1996
,
Radiation Heat Transfer in Disperse Systems
,
Begell House
,
New York
.
You do not currently have access to this content.