Due to excessive droplet feeding, a period of flooding occurs as part of a typical droplet based thermal management cycle. The conventional superhydrophilic surface, which is designed for thin film evaporation because of its highly wettable character, has a limited improvement on the thermal performance during the flooded condition. This paper investigates microstructures which combine micropillars and four engineered wettability patterns to improve the heat dissipation rate during flooding. Using the transient, 3D volume-of-fluid (VOF) model, the bubble behaviors of growth, coalescence, and departure are analyzed within different microstructures and the effects of pillar height and wettability patterns on the thermal performance are discussed. The wettability gradient patched on the pillar's side is demonstrated to promote the bubble's upward movement due to the contact angle difference between the upper and lower interfaces. However, insufficient pulling force results in large bubbles being pinned at the pillar tops, which forms a vapor blanket, and consequently decreases the heat transfer coefficient. When only a patch of hydrophobic material is present on the pillar top, effective pulling forces can be developed to help bubbles in the lower level depart from the pillar forest, since bubble merging between them generates most of the power required to pull the bubbles to the surface. The simulation results, including heat source temperatures and heat transfer coefficients, indicate that a patch of hydrophobic material on the pillar top works best out of all of the cases studied.

References

1.
Bar-Cohen
,
A.
,
Wang
,
P.
, and
Rahim
,
E.
,
2007
, “
Thermal Management of High Heat Flux Nanoelectronic Chips
,”
Microgravity Sci. Technol
,
19
(
3–4
), pp.
48
52
.10.1007/BF02915748
2.
Bar-Cohen
,
A.
, and
Wang
,
P.
,
2012
, “
Thermal Management of On-Chip Hot Spot
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051017
.10.1115/1.4005708
3.
Sabry
,
M. N.
,
2005
, “
Compact Thermal Models for Internal Convection
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
58
64
.10.1109/TCAPT.2004.843207
4.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
5.
Singhal
,
V.
,
Garimella
,
S. V.
, and
Raman
,
A.
,
2004
, “
Microscale Pumping Technologies for Microchannel Cooling Systems
,”
ASME Appl. Mech. Rev.
,
57
(
3
), pp.
191
221
.10.1115/1.1695401
6.
Park
,
K. A.
, and
Bergles
,
A. E.
,
1986
, “
Boiling Heat Transfer Characteristics of Simulated Microelectronic Chips With Detachable Heat Sinks
,”
Proceedings of the 8th International Heat Transfer Conference
,
Hemisphere, New York
, pp.
2099
2104
.
7.
Honda
,
H.
,
Wei
,
J. J.
, and
Takamastu
,
H.
,
2001
, “
Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
383
390
.10.1115/1.1447937
8.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.10.1016/0017-9310(94)90103-1
9.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
,
1992
, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
5
), pp.
832
842
.10.1109/33.180049
10.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1992
, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux From an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
764
768
.10.1115/1.2911348
11.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
323
332
.10.1115/1.2792112
12.
Hsieh
,
C.-C.
, and
Yao
,
S.-C.
,
2006
, “
Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
962
974
.10.1016/j.ijheatmasstransfer.2005.09.013
13.
Yang
,
J.
,
Chow
,
L. C.
, and
Pais
,
M. R.
,
1996
, “
Nucleate Boiling Heat Transfer in Spray Cooling
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
668
671
.10.1115/1.2822684
14.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
15.
Horacek
,
B.
,
Kiger
,
K. T.
, and
Kim
,
J.
,
2005
, “
Single Nozzle Spray Cooling Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1425
1438
.10.1016/j.ijheatmasstransfer.2004.10.026
16.
Bostanci
,
H.
,
Rini
,
D. P.
,
Kizito
,
J. P.
,
Singh
,
V.
,
Seal
,
S.
, and
Chow
,
L. C.
,
2012
, “
High Heat Flux Spray Cooling With Ammonia: Investigation of Enhanced Surfaces for CHF
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3849
3856
.10.1016/j.ijheatmasstransfer.2012.03.040
17.
Cheng
,
J. T.
, and
Chen
,
C. L.
,
2010
, “
Adaptive Chip Cooling Using Electrowetting on Coplanar Control Electrodes
,”
Nanoscale Microscale Thermophys. Eng.
,
14
(
2
), pp.
63
74
.10.1080/15567261003601771
18.
Cheng
,
J. T.
, and
Chen
,
C. L.
,
2010
, “
Active Thermal Management of On-Chip Hot Spots Using EWOD-Driven Droplet Microfluidics
,”
Exp. Fluids
,
49
(
6
), pp.
1349
1357
.10.1007/s00348-010-0882-4
19.
Baird
,
E.
, and
Mohseni
,
K.
,
2008
, “
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
143
151
.10.1109/TCAPT.2008.916810
20.
Shen
,
J.
,
Graber
,
C.
,
Liburdy
,
J.
,
Pence
,
D.
, and
Narayanan
,
V.
,
2010
, “
Simultaneous Droplet Impingement Dynamics and Heat Transfer on Nano-Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
496
503
.10.1016/j.expthermflusci.2009.02.003
21.
Zhou
,
Z.
,
Shi
,
J.
,
Chen
,
H.-H.
,
Schafer
,
S. R.
, and
Chen
,
C.-L.
,
2014
, “
Two-Phase Flow Over Flooded Micro-Pillar Structures With Engineered Wettability Pattern
,”
Int. J. Heat Mass Transfer
,
71
, pp.
593
605
.10.1016/j.ijheatmasstransfer.2013.12.057
22.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
23.
Knudsen
,
M.
,
1934
,
The Kinetic Theory of Gases: Some Modern Aspects
,
Methuen, New York
.
24.
Marek
,
R.
, and
Straub
,
J.
,
2001
, “
Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
39
53
.10.1016/S0017-9310(00)00086-7
25.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena
,
Hemisphere, New York
.
26.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC, Boca Raton, FL
.
27.
Chen
,
F.
,
Milnes
,
D.
,
Anita
,
R.
, and
Kenneth
,
G.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Heat Mass Transfer
,
1
(
1
), p.
013002
.10.5098/hmt.v1.1.3002
28.
Wei
,
J.-H.
,
Pan
,
L.-M.
,
Chen
,
D.-Q.
,
Zhang
,
H.
,
Xu
,
J.-J.
, and
Huang
,
Y.-P.
,
2011
, “
Numerical Simulation of Bubble Behaviors in Subcooled Flow Boiling Under Swing Motion
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
2898
2908
.10.1016/j.nucengdes.2011.05.008
29.
Youngs
,
D.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
, Vol. 24, K. W. Morton and M. J. Baines, eds., Academic, New York, pp.
273
285
.
30.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1003
1016
.10.1016/j.ijheatmasstransfer.2007.05.025
You do not currently have access to this content.