Solar energy can be harvested via thermal, photovoltaic, and photovoltaic/thermal (PV/T) hybrid technologies. PV/T systems are advantageous because they utilize more of the solar spectrum and achieve a higher combined efficiency. One approach to PV/T design is to keep the operating temperature of the PV low while achieving a high temperature for the thermal absorber. Various designs of PV/T hybrids (both flat plate and concentrated) have already been proposed which utilize air or water to remove the heat from PV cells in order to enhance the overall efficiency of PV/T hybrid collector. We propose that a nanofluid can be used instead, doubling as both the heat transfer medium and an optical filter, which allows for thermal isolation of the PV and thermal receiver. Thus, unwanted IR and UV light is filtered before it hits the PV cells, which allows for higher overall efficiencies. In this study, a new design of a PV/T hybrid collector was proposed and two nanofluid filters (based on gold and silver nanoparticles) were tested with a silicon (Si) PV cell. The corresponding stagnation temperatures of PV/T hybrid collector were measured and compared with a theoretical model. The experimental measurements validate the theoretical model, giving similar results over the range of parameters tested. The silver nanofluid design achieved the highest thermal, PV and overall efficiency and both nanofluid configurations out-performed an analogous surface absorber PV/T design under similar conditions. Overall, this study shows that nanofluids represent a feasible and viable multifunctional (optical filter and heat transfer) media in PV/T solar systems.

References

1.
Energy—Consumption
,
2009
, “Consumption by Fuel, 1965–2008, Statistical Review of World Energy 2009,” accessed Apr. 2014, http://www.bp.com/statisticalreview
2.
Hansen
,
J.
,
Sato
,
M.
,
Ruedy
,
R.
,
Schmidt
,
G. A.
, and
Lo
,
K.
,
2014
, “Global Temperature in 2014 and 2015,” accessed Jan. 2015, http://www.columbia.edu/∼jeh1/mailings/2015/20150116_Temperature2014.pdf
3.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Thermal Modeling of a Combined System of Photovoltaic Thermal (PV/T) Solar Water Heater
,”
Sol. Energy
,
82
(
7
), pp.
602
612
.10.1016/j.solener.2008.02.005
4.
Ibrahim
,
A.
,
Othman
,
M. Y.
,
Ruslan
,
M. H.
,
Mat
,
S.
, and
Sopian
,
K.
,
2011
, “
Recent Advances in Flat Plate Photovoltaic/Thermal (PV/T) Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
352
365
.10.1016/j.rser.2010.09.024
5.
Palmer
,
K. F.
, and
Williams
,
D. J.
,
1974
, “
Optical Properties of Water in the Near Infrared
,”
J. Opt. Soc. Am.
,
64
(
8
), pp.
1107
1110
.10.1364/JOSA.64.001107
6.
Kalogirou
,
S. A.
, and
Tripanagnostopoulos
,
Y.
,
2006
, “
Hybrid PV/T Solar Systems for Domestic Hot Water and Electricity Production
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
3368
3382
.10.1016/j.enconman.2006.01.012
7.
Zondag
,
H. A.
,
de Vries
,
D. W.
,
van Helden
,
W. G. J.
, and
van Zolingen
,
R. J. C.
,
2003
, “
The Yield of Different Combined PV-Thermal Collector Designs
,”
Sol. Energy
,
74
(
3
), pp.
253
269
.10.1016/S0038-092X(03)00121-X
8.
Tyagi
,
H.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.10.1115/1.3197562
9.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.10.1016/j.solener.2008.12.009
10.
Otanicar
,
T. P.
,
Chowdhury
,
I.
,
Prasher
,
R.
, and
Phelan
,
P. E.
,
2011
, “
Band-Gap Tuned Direct Absorption for a Hybrid Concentrating Solar Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041014
.10.1115/1.4004708
11.
Taylor
,
R. A.
,
Otanicar
,
T. P.
,
Hewakuruppu
,
Y.
,
Bremond
,
F.
,
Hawkes
,
E. R.
,
Jiang
,
X.
, and
Coulombe
,
S.
,
2013
, “
Feasibility of Nanofluid-Based Optical Filters
,”
Appl. Opt.
,
52
(
7
), pp.
1413
1422
.10.1364/AO.52.001413
12.
Otanicar
,
T. P.
,
Taylor
,
R. A.
, and
Telang
,
C.
,
2013
, “
Photovoltaic/Thermal (PV/T) System Performance Utilizing Thin Film and Nanoparticle Dispersion Based Optical Filters
,”
J. Renewable Sustainable Energy
,
5
(
3
), p.
033124
.10.1063/1.4811095
13.
Crisostomo
,
F.
,
Taylor
,
R. A.
,
Surjadi
,
D.
,
Mojiri
,
A.
,
Rosengarten
,
G.
, and
Hawkes
,
E. R.
,
2015
, “
Spectral Splitting Strategy and Optical Model for the Development of a Concentrating Hybrid PV/T Collector
,”
Appl. Energy
,
141
, pp.
238
246
.10.1016/j.apenergy.2014.12.044
14.
Otanicar
,
T. P.
,
Theisen
,
S.
,
Norman
,
T.
,
Tyagi
,
H.
, and
Taylor
,
R. A.
,
2015
, “
Envisioning Advanced Solar Electricity Generation: Parametric Studies of CPV/T Systems With Spectral Filtering and High Temperature PV
,”
Appl. Energy
,
140
, pp.
224
233
.10.1016/j.apenergy.2014.11.073
15.
Crisostomo
,
F.
,
Taylor
,
R. A.
,
Zhang
,
T.
,
Perez-Wurfl
,
I.
,
Rosengarten
,
G.
,
Everett
,
V.
, and
Hawkes
,
E. R.
,
2014
, “
Experimental Testing of SiNx/SiO2 Thin Film Filters for a Concentrating Solar Hybrid PV/T Collector
,”
Renewable Energy
,
72
, pp.
79
87
.10.1016/j.renene.2014.06.033
16.
Mojiri
,
A.
,
Taylor
,
R. A.
,
Thomsen
,
E.
, and
Rosengarten
,
G.
,
2013
, “
Spectral Beam Splitting for Efficient Conversion of Solar Energy—A Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
654
663
.10.1016/j.rser.2013.08.026
17.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Adrian
,
R. J.
,
Gunawan
,
A.
, and
Otanicar
,
T. P.
,
2012
, “
Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids
,”
Int. J. Therm. Sci.
,
56
, pp.
1
11
.10.1016/j.ijthermalsci.2012.01.012
18.
Taylor
,
R. A.
,
Otanicar
,
T. P.
, and
Rosengarten
,
G.
,
2012
, “
Nanofluid-Based Optical Filter Optimization for PV/T Systems
,”
Light: Sci. Appl.
,
1
(34), pp.
1
7
.10.1038/lsa.2012.34
19.
ASTM G173-03
,
2014
, “
Standard Tables for Reference Solar Spectral Irradiances
,” Accessed in Apr.
2014
.
20.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
, p.
225
.10.1186/1556-276X-6-225
21.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1998
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
, pp.
287
324
.
22.
Palik
,
E.
,
1998
,
Handbook of Optical Constants of Solids
,
Elsevier
,
London
.
23.
Brewster
,
M. Q.
,
1992
,
Thermal Radiative Transfer and Properties
,
Wiley
,
New York
.
24.
Cengel
,
Y. A.
,
2008
,
Heat Transfer: A Practical Approach
, 2nd ed.,
McGraw-Hill
,
New York
.
25.
Otanicar
,
T.
,
Chowdhury
,
I.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2010
, “
Parametric Analysis of a Coupled Photovoltaic/Thermal Concentrating Solar Collector for Electricity Generation
,”
J. Appl. Phys.
,
108
(
11
), p.
114907
.10.1063/1.3514590
26.
Fan
,
J. C. C.
,
1986
, “
Theoretical Temperature Dependence of Solar Cell Parameters
,”
Sol. Cells
,
17
(
2–3
), pp.
309
315
.10.1016/0379-6787(86)90020-7
27.
Tiwari
,
G. N.
, and
Dubey
,
S.
,
2010
,
Fundamentals of Photovoltaic Modules and their Applications
,
RSC Publishing
,
Cambridge, UK
, pp.
174
256
.
You do not currently have access to this content.