A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier–Stokes equations for continuum domain are solved through the pressure implicit with splitting of operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that the heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

References

References
1.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
,
2005
, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5580
5601
.10.1016/j.ijheatmasstransfer.2005.05.041
2.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
3.
Owhaib
,
W.
, and
Palm
,
B.
,
2004
, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
105
110
.10.1016/S0894-1777(03)00028-1
4.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
Appl. Phys. Rev.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
5.
Liu
,
B.
,
Jiang
,
H.
,
Huang
,
Y.
,
Qu
,
S.
, and
Yu
,
M. F.
,
2005
, “
Atomic-Scale Finite Element Method in Multiscale Computation With Applications to Carbon Nanotubes
,”
Phys. Rev. B
,
72
(
3
), p.
035435
.10.1103/PhysRevB.72.035435
6.
Ganzenmuller
,
G. C.
,
Hiermaier
,
S.
, and
Steinhauser
,
M. O.
,
2012
, “
Consistent Temperature Coupling With Thermal Fluctuations of Smooth Particle Hydrodynamics and Molecular Dynamics
,”
PLoS ONE
,
7
(
12
).10.1371/journal.pone.0051989
7.
Zhou
,
W. J.
,
Luan
,
H. B.
,
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2011
, “
Application
,”
J. Eng. Thermophys.
,
32
(
4
), pp.
679
682
.
8.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific
,
Singapore
.
9.
Nie
,
X. B.
,
Chen
,
S. Y.
,
E
,
W. N.
, and
Robbins
,
M. O.
,
2004
, “
A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow
,”
J. Fluid Mech.
,
500
, pp.
55
64
.10.1017/S0022112003007225
10.
O'Connell
,
S. T.
, and
Thompson
,
P. A.
,
1995
, “
Molecular Dynamics-Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flow
,”
Phys. Rev. E
,
52
(
6
), pp.
R5792
R5795
.10.1103/PhysRevE.52.R5792
11.
Delgado-Buscalioni
,
R.
, and
Coveney
,
P. V.
,
2003
, “
Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow
,”
Phys. Rev. E
,
67
(
4
), p.
046704
.10.1103/PhysRevE.67.046704
12.
Werder
,
T.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2005
, “
Hybrid Atomistic–Continuum Method for the Simulation of Dense Fluid Flows
,”
J. Comput. Phys.
,
205
(
1
), pp.
373
390
.10.1016/j.jcp.2004.11.019
13.
Hadjiconstantinou
,
N. G.
,
1999
, “
Hybrid Atomistic–Continuum Formulations and the Moving Contact-Line Problem
,”
J. Comput. Phys.
,
154
(
2
), pp.
245
265
.10.1006/jcph.1999.6302
14.
Borg
,
M. K.
,
Macpherson
,
G. B.
, and
Reese
,
J. M.
,
2010
, “
Controllers for Imposing Continuum-to-Molecular Boundary Conditions in Arbitrary Fluid Flow Geometries
,”
Mol. Simul.
,
36
(
10
), pp.
745
757
.10.1080/08927021003752812
15.
Li
,
J.
,
Liao
,
D. Y.
, and
Yip
,
S.
,
1998
, “
Coupling Continuum to Molecular-Dynamics Simulation: Reflecting Particle Method and the Field Estimator
,”
Phys. Rev. E
,
57
(
6
), pp.
7259
7267
.10.1103/PhysRevE.57.7259
16.
Ren
,
W. Q.
,
2007
, “
Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids
,”
J. Comput. Phys.
,
227
(
2
), pp.
1353
1371
.10.1016/j.jcp.2007.09.007
17.
Flekkøy
,
E. G.
,
Wagner
,
G.
, and
Feder
,
J.
,
2000
, “
Hybrid Model for Combined Particle and Continuum Dynamics
,”
Europhys. Lett.
,
52
(
3
), pp.
271
276
.10.1209/epl/i2000-00434-8
18.
Barsky
,
S.
,
Delgado-Buscalioni.
,
R.
, and
Coveney
,
P. V.
,
2004
, “
Comparison of Molecular Dynamics With Hybrid Continuum-Molecular Dynamics for a Single Tethered Polymer in a Solvent
,”
J. Chem. Phys.
,
121
(
5
), pp.
2403
2411
.10.1063/1.1767996
19.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2008
, “
A Model for Hybrid Simulations of Molecular Dynamics and Computational Fluid Dynamics
,”
Phys. Fluids
,
20
(
11
), p.
113101
.10.1063/1.3003218
20.
Wang
,
Y. C.
, and
He
,
G. W.
,
2007
, “
A Dynamic Coupling Model for Hybrid Atomistic–Continuum Computations
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3574
3579
.10.1016/j.ces.2006.12.093
21.
Liu
,
J.
,
Chen
,
S. Y.
,
Nie
,
X. B.
, and
Robbins
,
M. O.
,
2007
, “
A Continuum–Atomistic Simulation of Heat Transfer in Micro- and Nano-Flows
,”
J. Comput. Phys.
,
227
(
1
), pp.
279
291
.10.1016/j.jcp.2007.07.014
22.
Sun
,
J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Molecular Dynamics-Continuum Hybrid Simulation for Condensation of Gas Flow in Microchannel
,”
Microfluid. Nanofluid.
,
7
(
3
), pp.
407
433
.10.1007/s10404-008-0394-1
23.
OpenCFD
,
2013
, OpenFOAM User Guider.
24.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
25.
Goniva
,
C.
,
Kloss
,
C.
,
Deen
,
N. G.
,
Kuipers
,
J. A. M.
, and
Pirker
,
S.
,
2012
, “
Influence of Rolling Friction Modeling on Single Spout Fluidized Bed Simulations
,”
Particuology
,
10
(
5
), pp.
582
591
.10.1016/j.partic.2012.05.002
26.
Klemens
,
P. G.
, and
Williams
,
R. K.
,
1986
, “
Thermal Conductivity of Metals and Alloys
,”
Int. Met. Rev.
,
31
(1), pp.
197
215
.
27.
Finnisa
,
M. W.
, and
Sinclaira
,
J. E.
,
1984
, “
A Simple Empirical N-Body Potential for Transition Metals
,”
Philos. Mag. A
,
50
(
1
), pp.
45
55
.10.1080/01418618408244210
28.
Schneider
,
T.
, and
Stoll
,
E.
,
1978
, “
Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions
,”
Phys. Rev. B
,
17
(
3
), pp.
1302
1322
.10.1103/PhysRevB.17.1302
29.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
30.
Faghri
,
A.
,
Zhang
,
Y. W.
, and
Howell
,
J.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital
,
Columbia, MO
.
31.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard-Jones Argon
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1799
1816
.10.1016/j.ijheatmasstransfer.2003.11.009
32.
Kang
,
H.
,
Zhang
,
Y.
, and
Yang
,
M.
,
2011
, “
Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using Eam Potential for Cu-Cu Interactions
,”
Appl. Phys. A: Mater. Sci. Process.
,
103
(
4
), pp.
1001
1008
.10.1007/s00339-011-6379-z
33.
Hwang
,
H. J.
,
Kwon
,
O. K.
, and
Kang
,
J. W.
,
2004
, “
Copper Nanocluster Diffusion in Carbon Nanotube
,”
Solid State Commun.
,
129
(
11
), pp.
687
690
.10.1016/j.ssc.2003.12.033
34.
Rapaport
,
D. C.
,
2001
,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge, UK
.
35.
Haynes
,
W. M.
,
2010
,
Handbook of Chemistry and Physics
,
91st ed.
,
Taylor & Francis
,
New York
.
36.
Liu
,
C. W.
,
Ko
,
H. S.
, and
Gau
,
C.
,
2011
,
Heat Transfer–Theoretical Analysis, Experimental Investigations and Industrial Systems
,
InTech
, Rijeka, Croatia.
You do not currently have access to this content.