The particle-continuum hybrid Laplacian method is extended as a framework for modeling all transport phenomena in fluids at the micro and nanoscale including multicomponent mass transfer and chemical reactions. The method is explained, and the micro-to-macro and macro-to-micro coupling steps are discussed. Two techniques for noise reduction (namely, the bonsai box (BB) and the seamless strategy) are discussed. Comparisons with benchmark full-molecular dynamics (MD) cases for micro and nano thermal and reacting flows show excellent agreement and good computational efficiency.
Issue Section:
Research Papers
References
1.
Jaworski
, Z.
, and Zakrzewska
, B.
, 2011
, “Towards Multiscale Modeling in Product Engineering
,” Comput. Chem. Eng.
, 35
(3
), pp. 434
–445
.10.1016/j.compchemeng.2010.05.0092.
Gad-El-Hak
, M.
, 2006
, MEMS: Introduction and Fundamentals
, Taylor & Francis
, Boca Raton, FL3.
Chen
, D. T. N.
, Wen
, Q.
, Janmey
, P. A.
, Crocker
, J. C.
, and Yodh
, A. G.
, 2010
, “Rheology of soft materials
,” Annu. Rev. Condens. Matter Phys.
, 1
, pp. 301
–322
.10.1146/annurev-conmatphys-070909-1041204.
O'Connell
, S. T.
, and Thompson
, T. A.
, 1995
, “Molecular Dynamics-Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows
,” Phys. Rev. E
, 52
, pp. 5792
–5795
.10.1103/PhysRevE.52.R57925.
Mohamed
, K. M.
, and Mohamad
, A. A.
, 2010
, “A Review of the Development of Hybrid Atomistic-Continuum Methods for Dense Fluids
,” Microfluid. Nanofluid.
, 8
(3
), pp. 283
–302
.10.1007/s10404-009-0529-z6.
Li
, J.
, Liao
, D.
, and Yip
, S.
, 1998
, “Coupling Continuum to Molecular-Dynamics Simulation: Reflecting Particle Method and the Field Estimator
,” Phys. Rev. E
, 57
(6
), pp. 7259
–7267
.10.1103/PhysRevE.57.72597.
Hadjiconstantinou
, N. G.
, and Patera
, A. T.
, 1997
, “Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems
,” Int. J. Mod. Phys. C
, 8
(4
), pp. 967
–976
.10.1142/S01291831970008378.
Nie
, X.
, Chen
, S. Y.
, E
, W. N.
, and Robbins
, M. O.
, 2004
, “A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow
,” J. Fluid Mech.
, 500
, pp. 55
–64
10.1017/S00221120030072259.
Delgado-Buscalioni
, R.
, and Coveney
, P. V.
, 2004
, “Hybrid Molecular-Continuum Fluid Dynamics
,” Philos. Trans. R. Soc. London, Ser. A
, 362
(1821
), pp. 1639
–1654
.10.1098/rsta.2005.162310.
Koumoutsakos
, P.
, 2005
, “Multiscale Flow Simulations Using Particles
,” Annu. Rev. Fluid Mech.
, 37
, pp. 457
–487
.10.1146/annurev.fluid.37.061903.17575311.
Ren
, W.
, and E
, W.
, 2005
, “Heterogeneous Multiscale Method for the Modelling of Complex Fluids and Micro-Fluidics
,” J. Comput. Phys.
, 204
(1), pp. 1
–26
.10.1016/j.jcp.2004.10.00112.
Asproulis
, N.
, Kalweit
, M.
, and Drikakis
, D.
, 2012
, “A Hybrid Molecular Continuum Method Using Point Wise Coupling
,” Adv. Eng. Software
, 46
(1
), pp. 85
–92
.10.1016/j.advengsoft.2010.10.01013.
Borg
, M. K.
, Lockerby
, D. A.
, and Reese
, J. M.
, 2013
, “A Multiscale Method for Micro/Nano Flows of High Aspect Ratio
,” J. Comput. Phys.
, 233
, pp. 400
–413
.10.1016/j.jcp.2012.09.00914.
Liu
, J.
, Chen
, S.
, Nie
, X.
, and Robbins
, M. O.
, 2007
, “A Continuum-Atomistic Simulation of Heat Transfer in Micro- and Nano-Flows
,” J. Comput. Phys.
, 227
(1
), pp. 279
–291
.10.1016/j.jcp.2007.07.01415.
Alexiadis
, A.
, Lockerby
, D. A.
, Borg
, M. K.
, and Reese
, J. M.
, 2013
, “A Laplacian-Based Algorithm for Non-Isothermal Atomistic-Continuum Hybrid Simulation of Micro and Nano-Flows
,” Comput. Methods Appl. Mech. Eng.
, 264
, pp. 81
–94
.10.1016/j.cma.2013.05.02016.
Lo
, C.
, and Palmer
, B.
, 1995
, “Alternative Hamiltonian for Molecular Dynamics Simulations in the Grand Canonical Ensemble
,” J. Chem. Phys.
, 102
(2
), pp. 925
–931
.10.1063/1.46915917.
Shroll
, R. M.
, 1999
, “Molecular Dynamics Simulations in the Grand Canonical Ensemble: Formulation of a Bias Potential for Umbrella Sampling
,” J. Chem. Phys.
, 110
(17
), pp. 8295
–8302
.10.1063/1.47879118.
Lupkowski
, M.
, and Van Swol
, F.
, 1991
, “Ultrathin Films Under Shear
,” J. Chem. Phys.
, 95
(3), pp. 1995
–1998
.10.1063/1.46099719.
Papadopoulou
, A.
, Becker
, E. D.
, Lupkowski
, M.
, and Van Swol
, F.
, 1993
, “Molecular Dynamics and Monte Carlo Simulations in the Grand Canonical Ensemble: Local Versus Global Control
,” J. Chem. Phys.
, 98
(6
), pp. 4897
–4908
.10.1063/1.46494520.
Heffelfinger
, G. S.
, and Van Swol
, F.
, 1994
, “Diffusion in Lennard-Jones Fluids Using Dual Control Volume Grand Canonical Molecular Dynamics Simulation (DCV-GCMD)
,” J. Chem. Phys.
, 100
(10
), pp. 7548
–7552
.10.1063/1.46684921.
Boinepalli
, S.
, and Attard
, P.
, 2003
, “Grand Canonical Molecular Dynamics
,” J. Chem. Phys.
, 119
(24
), pp. 12769
–12775
.10.1063/1.162907922.
Drikakis
, D.
, and Asproulis
, N.
, 2010
, “Multi-Scale Computational Modelling of Flow and Heat Transfer
,” Int. J. Numer. Methods Heat Fluid Flow
, 20
(5
), pp. 517
–528
.10.1108/0961553101104822223.
E
, W.
, Ren
, W.
, and Vanden-Eijnden
, E.
, 2009
, “A General Strategy for Designing Seamless Multiscale Methods
,” J. Comput. Phys.
, 228
(15
), pp. 5437
–5453
.10.1016/j.jcp.2009.04.03024.
Trozzi
, C.
, and Ciccotti
, G.
, 1984
, “Stationary Non-Equilibrium States by Molecular Dynamics. II. Newton's Law
,” Phys. Rev. A
, 29
(2
), pp. 916
–925
.10.1103/PhysRevA.29.91625.
Alexiadis
, A.
, Lockerby
, D. A.
, Borg
, M. K.
, and Reese
, J. M.
, 2014
, “The Atomistic-Continuum Hybrid Taxonomy and the Hybrid-Hybrid Approach
,” Int. J. Numer. Methods Eng.
, 98
(7
), pp. 534
–546
.10.1002/nme.464626.
Gillespie
, D.
, 1976
, “A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions
,” J. Comput. Phys.
, 22
(4
), pp. 403
–434
.10.1016/0021-9991(76)90041-3Copyright © 2015 by ASME
You do not currently have access to this content.