Enhancement in carbon dioxide absorption in water has been studied using SiO2 and TiO2 nanoparticles using the capillary tube apparatus for which previous results on Fe3O4 nanoparticles were reported earlier. Enhancements of up to 165% in the mass transfer coefficients were observed at fairly low volume fractions of the particles. A model which accounts for the effect of particles in terms of a superimposed convection has been proposed to explain the observed effects of particle size, hold-up, and material density. The model provides a good fit to the data from wetted wall column and capillary tube experiment for Fe3O4 from the previous literature, as well as for the data from this work.

References

References
1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
2.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
,
94
(
8
), pp.
4967
4971
.10.1063/1.1613374
3.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
4.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Sreekumaran Nair
,
A.
,
George
,
B.
, and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2931
2933
.10.1063/1.1602578
5.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
,
91
(
7
), pp.
4568
4572
.10.1063/1.1454184
6.
Olle
,
B.
,
Bucak
,
S.
,
Holmes
,
T. C.
,
Bromberg
,
L.
,
Hatton
,
T. A.
, and
Wang
,
D. I. C.
,
2006
, “
Enhancement of Oxygen Mass Transfer Using Functionalized Magnetic Nanoparticles
,”
Ind. Eng. Chem. Res.
,
45
(
12
), pp.
4355
4363
.10.1021/ie051348b
7.
Kim
,
J. K.
,
Jung
,
J. Y.
, and
Kang
,
Y. T.
,
2006
, “
The Effect of Nano-Particles on the Bubble Absorption Performance in a Binary Nanofluid
,”
Int. J. Refrig.
,
29
(
1
), pp.
22
29
.10.1016/j.ijrefrig.2005.08.006
8.
Nagy
,
E.
,
Feczkó
,
T.
, and
Koroknai
,
B.
,
2007
, “
Enhancement of Oxygen Mass Transfer Rate in the Presence of Nanosized Particles
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7391
7398
.10.1016/j.ces.2007.08.064
9.
Komati
,
S.
, and
Suresh
,
A. K.
,
2008
, “
CO2 Absorption Into Amine Solutions: A Novel Strategy for Intensification Based on the Addition of Ferrofluids
,”
J. Chem. Technol. Biotechnol.
,
83
(
8
), pp.
1094
1100
.10.1002/jctb.1871
10.
Komati
,
S.
, and
Suresh
,
A. K.
,
2010
, “
Anomalous Enhancement of Interphase Transport Rates by Nanoparticles: Effect of Magnetic Iron Oxide on Gas−Liquid Mass Transfer
,”
Ind. Eng. Chem. Res.
,
49
(
1
), pp.
390
405
.10.1021/ie900302z
11.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
12.
Bruining
,
W. J.
,
Joosten
,
G. E. H.
,
Beenackers
,
A. A. C. M.
, and
Hofman
,
H.
,
1986
, “
Enhancement of Gas–Liquid Mass Transfer by a Dispersed Second Liquid Phase
,”
Chem. Eng. Sci.
,
41
(
7
), pp.
1873
1877
.10.1016/0009-2509(86)87066-X
13.
Mehra
,
A.
,
1988
, “
Intensification of Multiphase Reactions Through the Use of a Microphase—I. Theoretical
,”
Chem. Eng. Sci.
,
43
(
4
), pp.
899
912
.10.1016/0009-2509(88)80086-1
14.
Komati
,
S.
,
2009
,
Mass Transfer Enhancement Using Nano-Magentic Iron-Oxide Particles
,
Indian Institute of Technology Bombay
,
Mumbai
.
You do not currently have access to this content.