Bone has very different thermal and electrical properties with the surrounding tissues. Misjustification of the heating dosage during an electromagnetic (EM) hyperthermia may lead to the failure of the treatment. Here aiming to disclose such clinically important issue, the present study presented a theoretical evaluation on the heating effects of magnetic-nanoparticles (MNPs) enhanced hyperthermia on the liver tumor underneath the ribs with bone features particularly addressed. The results revealed the following factors: (1) The existence of bone structure, i.e., ribs has an inevitable effect on the distribution of EM field; specifically, due to its lower dielectric property, the bone structure served as a barrier to attenuate the transport of EM energy and conversion of heat into the tissues, especially the tumor in the deep body. (2) Applying higher dosage or larger size MNPs would significantly enhance the temperature elevation at the target tumor tissues and thereby guarantee the performance of the hyperthermia. (3) Further parametric studies indicated that a higher frequency EM field would result in a worse heating effect; while stronger EM field will evidently enhance the heating effects of the hyperthermia process. This study promoted the better understanding of the EM heating on the bone structured tissues, and the findings are expected to provide valuable reference for planning an accurate surgery in future clinical liver tumor EM ablation.

References

References
1.
Moroz
,
P.
,
Jones
,
S. K.
, and
Gray
,
B. N.
,
2002
, “
Magnetically Mediated Hyperthermia: Current Status and Future Directions
,”
Int. J. Hyperthermia
,
18
(
4
), pp.
267
284
.10.1080/02656730110108785
2.
Johannsen
,
M.
,
Thiesen
,
B.
,
Wust
,
P.
, and
Jordan
,
A.
,
2010
, “
Magnetic Nanoparticle Hyperthermia for Prostate Cancer
,”
Int. J. Hyperthermia
,
26
(
8
), pp.
790
795
.10.3109/02656731003745740
3.
Wust
,
P.
,
Gneveckow
,
U.
,
Johannsen
,
M.
,
Böhmer
,
D.
,
Henkel
,
T.
,
Kahmann
,
F.
,
Sehouli
,
J.
,
Felix
,
R.
,
Ricke
,
J.
, and
Jordan
,
A.
,
2006
, “
Magnetic Nanoparticles for Interstitial Thermotherapy-Feasibility, Tolerance and Achieved Temperatures
,”
Int. J. Hyperthermia
,
22
(
8
), pp.
673
685
.10.1080/02656730601106037
4.
Babincová
,
M.
,
Leszczynska
,
D.
,
Sourivong
,
P.
,
Čičmanec
,
P.
, and
Babinec
,
P.
,
2001
, “
Superparamagnetic Gel as a Novel Material for Electromagnetically Induced Hyperthermia
,”
J. Magn. Magn. Mater.
,
225
(
1–2
), pp.
109
112
.10.1016/S0304-8853(00)01237-3
5.
Berry
,
C. C.
, and
Curtis
,
A. S. G.
,
2003
, “
Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
36
(
13
), pp.
R198
R206
.10.1088/0022-3727/36/13/203
6.
Gazeau
,
F.
,
Lévy
,
M.
, and
Wilhelm
,
C.
,
2003
, “
Optimizing Magnetic Nanoparticle Design for Nanothermotherapy
,”
Nanomedicine (London, U.K.)
,
3
(
6
), pp.
831
844
.10.2217/17435889.3.6.831
7.
Moroz
,
P.
,
Jones
,
S. K.
, and
Gray
,
B. N.
,
2002
, “
Tumor Response to Arterial Embolization Hyperthermia and Direct Injection Hyperthermia in a Rabbit Liver Tumor Model
,”
J. Surg. Oncol.
,
80
(
3
), pp.
149
156
.10.1002/jso.10118
8.
Jordan
,
A.
,
Scholz
,
R.
,
Wust
,
P.
,
Fähling
,
H.
, and
Felix
,
R.
,
1999
, “
Magnetic Fluid Hyperthermia (MFH): Cancer Treatment With AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles
,”
J. Magn. Magn. Mater.
,
201
(
1–3
), pp.
413
419
.10.1016/S0304-8853(99)00088-8
9.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Eckelt
,
L.
,
Feussner
,
A.
,
WaldÖFner
,
N.
,
Scholz
,
R.
,
Deger
,
S.
,
Wust
,
P.
,
Loening
,
S. A.
, and
Jordan
,
A.
,
2005
, “
Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,”
Int. J. Hyperthermia
,
21
(
7
), pp.
637
647
.10.1080/02656730500158360
10.
Maier-Hauff
,
K.
,
Rothe
,
R.
,
Scholz
,
R.
,
Gneveckow
,
U.
,
Wust
,
P.
,
Thiesen
,
B.
,
Feussner
,
A.
,
Deimling
,
A.
,
Waldoefner
,
N.
,
Felix
,
R.
, and
Jordan
,
A.
,
2007
, “
Intracranial Thermotherapy Using Magnetic Nanoparticles Combined With External Beam Radiotherapy: Results of a Feasibility Study on Patients With Glioblastoma Multiforme
,”
J. Neuro-Oncol.
,
81
(
1
), pp.
53
60
.10.1007/s11060-006-9195-0
11.
Xu
,
R. Z.
,
Yu
,
H.
,
Zhang
,
Y.
,
Ma
,
M.
,
Chen
,
Z. P.
,
Wang
,
C. L.
,
Teng
,
G. J.
,
Ma
,
J.
, and
Sun
,
X. C.
,
2009
, “
Three-Dimensional Model for Determining Inhomogeneous Thermal Dosage in a Liver Tumor During Arterial Embolization Hyperthermia Incorporating Magnetic Nanoparticles
,”
IEEE Trans. Magn.
,
45
(
8
), pp.
3085
3091
.10.1109/TMAG.2009.2019128
12.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Thiesen
,
B.
,
Taymoorian
,
K.
,
Cho
,
C. H.
,
Waldöfner
,
N.
,
Scholz
,
R.
,
Jordan
,
A.
,
Loening
,
S. A.
, and
Wust
,
P.
,
2007
, “
Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging and Three-Dimensional Temperature Distribution
,”
Eur. Urol.
,
52
(
6
), pp.
1653
1661
.10.1016/j.eururo.2006.11.023
13.
Kaatee
,
R. S.
,
Crezee
,
H.
, and
Visser
,
A. G.
,
1999
, “
Temperature Measurement Errors With Thermocouples Inside 27 MHz Current Source Insterstitial Hyperthermia Applicators
,”
Phys. Med. Biol.
,
44
(
6
), pp.
1499
1511
.10.1088/0031-9155/44/6/305
14.
Lv
,
Y. G.
,
Deng
,
Z. S.
, and
Liu
,
J.
,
2005
, “
3-D Numerical Study on the Induced Heating Effects of Embedded Micro/Nanoparticles on Human Body Subject to External Medical Electromagnetic Field
,”
IEEE Trans. Nanobioscience
,
4
(
4
), pp.
284
294
.10.1109/TNB.2005.859549
15.
Yue
,
K.
,
Zheng
,
S. B.
,
Luo
,
Y. H.
,
Zhang
,
X. X.
, and
Tang
,
J. T.
,
2011
, “
Determination of the 3D Temperature Distribution During Ferromagnetic Hyperthermia Under the Influence of Blood Flow
,”
J. Therm. Biol.
,
36
(
8
), pp.
498
506
.10.1016/j.jtherbio.2011.09.002
16.
Wang
,
Q.
,
Deng
,
Z. S.
, and
Liu
,
J.
,
2012
, “
Theoretical Evaluations of Magnetic Nanoparticle-Enhanced Heating on Tumor Embedded With Large Blood Vessels During Hyperthermia
,”
J. Nanopart. Res.
,
14
(
7
), p.
974
.10.1007/s11051-012-0974-6
17.
Wang
,
Q.
, and
Liu
,
J.
,
2011
, “
Effects of Nonuniform Tissue Properties on Temperature Prediction in Magnetic Nanohyperthermia
,”
ASME J. Nanotechnol. Eng. Med.
,
2
(
2
), p.
021012
.10.1115/1.4003563
18.
Livne
,
E.
, and
Glasner
,
A.
,
1985
, “
A Finite Difference Scheme for the Heat Conduction Equation
,”
J. Comput. Phys.
,
58
(
1
), pp.
59
66
.10.1016/0021-9991(85)90156-1
19.
Lin
,
S. Y.
, and
Li
,
R. Y.
,
1996
,
Modern Hyperthermic Oncology: Principles, Methods and Clinics
,
Academy Press
,
Beijing
(in Chinese).
20.
Tang
,
R.
, and
Wang
,
C. C.
,
2002
, “
Numerical Simulation of Tissue-Equivalent Material Experiments for Radio Frequency Hyperthermia of Tumors
,”
J. Tsinghua Univ., Sci. Technol.
,
42
(
5
), pp.
676
679
.
21.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.
22.
Chang
,
I. A.
, and
Nguyen
,
U. D.
,
2004
, “
Thermal Modeling of Lesion Growth With Radiofrequency Ablation Devices
,”
Biomed. Eng. Online
,
3
(
1
),
p. 27
.10.1186/1475-925X-3-27
23.
Kim
,
B. M.
,
Jacques
,
S. L.
,
Rastegar
,
S.
,
Thomsen
,
S.
, and
Motamedi
,
M.
,
1996
, “
Nonlinear Finite-Element Analysis of the Role of Dynamic Changes in Blood Perfusion and Optical Properties in Laser Coagulation of Tissue
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
(
4
), pp.
922
933
.10.1109/2944.577317
24.
Liu
,
J.
,
2009
,
Tumor Hyperthermia Technology and Clinical Practice
,
Chinese Medical Science and Technology Press
,
Beijing
(in Chinese).
You do not currently have access to this content.