Analyses of microchannel and microgap cooling show that galinstan, a recently developed nontoxic liquid metal that melts at −19 °C, may be more effective than water for direct liquid cooling of electronics. The thermal conductivity of galinstan is nearly 28 times that of water. However, since the volumetric specific heat of galinstan is about half that of water and its viscosity is 2.5 times that of water, caloric, rather than convective, resistance is dominant. We analytically investigate the effect of using structured surfaces (SSs) to reduce the overall thermal resistance of galinstan-based microgap cooling in the laminar flow regime. Significantly, the high surface tension of galinstan, i.e., 7 times that of water, implies that it can be stable in the nonwetting Cassie state at the requisite pressure differences for driving flow through microgaps. The flow over the SS encounters a limited liquid–solid contact area and a low viscosity gas layer interposed between the channel walls and galinstan. Consequent reductions in friction factor result in decreased caloric resistance, but accompanying reductions in Nusselt number increase convective resistance. These are accounted for by expressions in the literature for apparent hydrodynamic and thermal slip. We develop a dimensionless expression to evaluate the tradeoff between the pressure stability of the liquid–solid–gas system and hydrodynamic slip. We also consider secondary effects including entrance effects and temperature dependence of thermophysical properties. Results show that the addition of SSs enhances heat transfer.

References

References
1.
Tuckerman
,
D.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Phillips
,
R. J.
,
1988
, “
Microchannel Heat Sinks
,”
Lincoln Lab. J.
,
1
(
1
), pp.
31
48
.
3.
Li
,
J.
, and
Peterson
,
G.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2895
2904
.10.1016/j.ijheatmasstransfer.2007.01.019
4.
Hodes
,
M.
,
Zhang
,
R.
,
Lam
,
L. S.
,
Wilcoxon
,
R.
, and
Lower
,
N.
,
2013
, “
On the Potential of Galinstan-Based Minichannel and Minigap Cooling
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
1
), pp.
46
56
.10.1109/TCPMT.2013.2274699
5.
RG Medical Diagnostics
,
2006
, Material Safety Data Sheet for Galinstan.
6.
Cadwallader
,
L. C.
,
2003
, “
Gallium Safety in the Laboratory
,” http://www.osti.gov/servlets/purl/911289-tQvyOl/
7.
Evans
,
D.
, and
Prince
,
A.
,
1978
, “
Thermal Analysis of Ga-In-Sn System
,”
Metal Sci.
,
12
(
9
), pp.
411
414
.10.1179/030634578790434025
8.
Liu
,
T.
,
Sen
,
P.
, and
Kim
,
C.-J. C. J.
,
2012
, “
Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices
,”
J. Microelectromech. Syst.
,
21
(
2
), pp.
443
450
.10.1109/JMEMS.2011.2174421
9.
Lauga
,
E.
, and
Stone
,
H.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
10.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Muzychka
,
Y.
,
2014
, “
Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,”
ASME J. Heat Transfer
,
136
(
1
), p.
012402
.10.1115/1.4024837
11.
Inman
,
R. M.
,
1964
, “
Laminar Slip Flow Heat Transfer in a Parallel-Plate Channel or a Round Tube With Uniform Wall Heating
,” NASA Technical Note D-2393.
12.
Quéré
,
D.
,
2008
, “
Wetting and Roughness
,”
Annu. Rev. Mater. Res.
,
38
(
1
), pp.
71
99
.10.1146/annurev.matsci.38.060407.132434
13.
Philip
,
J.
,
1972
, “
Integral Properties of Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
J. Appl. Math. Phys. (ZAMP)
,
23
(
6
), pp.
960
968
.10.1007/BF01596223
14.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
(
12
), p.
123601
.10.1063/1.2815730
15.
Ng
,
C.-O.
, and
Wang
,
C.
,
2010
, “
Apparent Slip Arising From Stokes Shear Flow Over a Bidimensional Patterned Surface
,”
Microfluid. Nanofluid.
,
8
(
3
), pp.
361
371
.10.1007/s10404-009-0466-x
16.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.10.1146/annurev-fluid-121108-145558
17.
Maynes
,
D.
,
Webb
,
B. W.
, and
Davies
,
J.
,
2008
, “
Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,”
ASME J. Heat Transfer
,
130
(
2
), p.
022402
.10.1115/1.2789715
18.
Maynes
,
D.
, and
Crockett
,
J.
,
2014
, “
Apparent Temperature Jump and Thermal Transport in Channels With Streamwise Rib and Cavity Featured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Transfer
,
136
(
1
), p.
011701
.10.1115/1.4025045
19.
Rosengarten
,
G.
,
Stanley
,
C.
, and
Kwok
,
F.
,
2008
, “
Superinsulating Heat Transfer Surfaces for Microfluidic Channels
,”
Int. J. Transp. Phenom.
,
10
(
4
), pp.
293
306
.
20.
Sparrow
,
E. M.
,
Lundgren
,
T. S.
, and
Lin
,
S. H.
,
1962
, “
Slip Flow in the Entrance Region of a Parallel Plate Channel
,”
Proceedings of the Heat Transfer and Fluid Mechanics Institute
, pp.
223
238
.
21.
Sparrow
,
E. M.
,
Lin
,
S. H.
, and
Lundgren
,
T. S.
,
1964
, “
Flow Development in the Hydrodynamic Entrance Region of Tubes and Ducts
,”
Phys. Fluids
,
7
(
3
), pp.
338
347
.10.1063/1.1711204
22.
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2002
, “
The Influence of Knudsen Number on the Hydrodynamic Development Length Within Parallel Plate Micro-Channels
,”
Adv. Fluid Mech.
,
32
, pp.
207
216
.
23.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.10.1115/1.4000692
24.
Muzychka
,
Y. S.
, and
Enright
,
R.
,
2013
, “
Numerical Simulation and Modeling of Laminar Developing Flow in Channels and Tubes With Slip
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101204
.10.1115/1.4024808
25.
Prokhorenko
,
V. Y.
,
Roshchupkin
,
V. V.
,
Pokrasin
,
M. A.
,
Prokhorenko
,
S. V.
, and
Kotov
,
V. V.
,
2000
, “
Liquid Gallium: Potential Uses as a Heat-Transfer Agent
,”
High Temp.
,
38
(
6
), pp. 954–968.10.1023/A:1004157827093
26.
Lemmon
,
E.
,
McLinden
,
M.
, and
Friend
,
D.
, “
Thermophysical Properties of Fluid Systems
,”
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
P.
Linstrom
, and
W.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg, MD
, accessed Aug. 31,
2011
, http://webbook.nist.gov
27.
Quéré
,
D.
,
2005
, “
Non-Sticking Drops
,”
Rep. Prog. Phys.
,
68
(11), pp.
2495
2532
.10.1088/0034-4885/68/11/R01
28.
AGC Chemicals Europe, Ltd.
,
2015
, “
CYTOP Amorphous Fluoropolymer Technical Information
,” accessed Feb. 10, http://www.agcce.com/CYTOP/TechInfo.asp
29.
Hodes
,
M.
,
Steigerwalt Lam
,
L.
,
Cowley
,
A.
,
Enright
,
R.
, and
MacLachlan
,
S.
,
2015
, “
Effect of Evaporation and Condensation at Menisci on Apparent Thermal Slip
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071502
.10.1115/1.4029818
30.
Zheng
,
Q.-S.
,
Yu
,
Y.
, and
Zhao
,
Z.-H.
,
2005
, “
Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces.
,”
Langmuir
,
21
(
26
), pp.
12207
12212
.10.1021/la052054y
31.
Lobaton
,
E. J.
, and
Salamon
,
T. R.
,
2007
, “
Computation of Constant Mean Curvature Surfaces: Application to the Gas-Liquid Interface of a Pressurized Fluid on a Superhydrophobic Surface.
,”
J. Colloid Interface Sci.
,
314
(
1
), pp.
184
198
.10.1016/j.jcis.2007.05.059
32.
Moulinet
,
S.
, and
Bartolo
,
D.
,
2007
, “
Life and Death of a Fakir Droplet: Impalement Transitions on Superhydrophobic Surfaces
,”
Eur. Phys. J. E
,
24
(
3
), pp.
251
260
.10.1140/epje/i2007-10235-y
33.
Lee
,
C.
,
Choi
,
C.-H.
, and
Kim
,
C.-J.
,
2008
, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
(
6
), pp.
1
4
.10.1103/PhysRevLett.101.064501
34.
Lafuma
,
A.
, and
Quéré
,
D.
,
2003
, “
Superhydrophobic States
,”
Nat. Mater.
,
2
(
7
), pp.
457
460
.10.1038/nmat924
35.
Cassie
,
A.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
36.
Wenzel
,
R.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
37.
Nield
,
D.
,
2004
, “
Forced Convection in a Parallel Plate Channel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5609
5612
.10.1016/j.ijheatmasstransfer.2004.07.006
38.
Smythe
,
W. R.
,
1968
,
Static and Dynamic Electricity
,
3rd ed.
,
McGraw-Hill
,
New York
.
39.
Yovanovich
,
M.
, and
Marotta
,
E.
,
2003
, “
Thermal Spreading and Contact Resistances
,”
Handbook of Heat Transfer
,
A.
Bejan
, and
A. D.
Kraus
, eds.,
John Wiley and Sons
, Hoboken, NJ, pp.
261
394
.
40.
Chen
,
R.-Y.
,
1972
, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
Winter Annual Meeting
, American Society of Mechanical Engineers, New York.
41.
Shah
,
R.
, and
London
,
A.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
, Waltham, MA.
You do not currently have access to this content.