A multiscale modeling of the anisotropic slip phenomenon for gas flows is presented in a tree-step approach: determination of the gas–wall potential, simulation and modeling of the gas–wall collisions, simulation and modeling of the anisotropic slip effects. The density functional theory (DFT) is used to examine the interaction between the Pt–Ar gas–wall couple. This potential is then passed into molecular dynamics (MD) simulations of beam scattering experiments in order to calculate accommodation coefficients. These coefficients enter in an effective gas–wall interaction model, which is the base of efficient MD simulations of gas flows between anisotropic surfaces. The slip effects are quantified numerically and compared with simplified theoretical models derived in this paper. The paper demonstrates that the DFT potential is in good agreement with empirical potentials and that an extension of the Maxwell model can describe anisotropic slip effects due to surface roughness, provided that two tangential accommodation parameters are introduced. MD data show excellent agreement with the tensorial slip theory, except at large Kundsen numbers (for example, Kn 0.2) and with an analytical expression which predicts the ratio between transverse and longitudinal slip velocity components.

References

References
1.
Dovesi
,
R.
,
Orlando
,
R.
,
Civalleri
,
B.
,
Roetti
,
C.
,
Saunders
,
V. R.
, and
Zicovich-Wilson
,
C. M.
,
2005
, “
Crystal: A Computational Tool for the ab Initio Study of the Electronic Properties of Crystals
,”
Z. Kristallogr.
,
220
, pp.
571
573
.10.1524/zkri.220.5.571.65065
2.
Léonard
,
C.
,
Brites
,
V.
,
Pham
,
T. T.
,
To
,
Q. D.
, and
Lauriat
,
G.
,
2013
, “
Influence of the Pairwise Potential on the Tangential Momentum Accommodation Coefficient: A Multi-Scale Study Applied to the Argon on Pt(111) System
,”
Eur. Phys. J. B
,
86
.10.1140/epjb/e2013-30809-9
3.
Doll
,
K.
,
2004
, “
CO Adsorption on the Pt (111) Surface: A Comparison of a Gradient Corrected Functional and a Hybrid Functional
,”
Surf. Sci.
,
573
(
3
), pp.
464
473
.10.1016/j.susc.2004.10.015
4.
Nada
,
R.
,
Nicholas
,
J. B.
,
McCarthy
,
M. I.
, and
Hess
,
A. C.
,
1996
, “
Basis Sets for ab Initio Periodic Hartree-Fock Studies of Zeolite/Adsorbate Interactions: He, Ne, and Ar in Silica Sodalite
,”
Int. J. Quantum Chem.
,
60
(
4
), pp.
809
820
.10.1002/(SICI)1097-461X(1996)60:4<809::AID-QUA3>3.0.CO;2-0
5.
Kulginov
,
D.
,
Persson
,
M.
,
Rettner
,
C. T.
, and
Bethune
,
D. S.
,
1996
, “
An Empirical Interaction Potential for the Ar/Pt (111) System
,”
J. Chem. Phys.
,
100
(
19
), pp.
7919
7927
.10.1021/jp9531725
6.
Ramseyer
,
C.
,
Hoang
,
P. N. M.
, and
Girardet
,
C.
,
1994
, “
Interpretation of High-Order Commensurate Phases for an Argon Monolayer Adsorbed on Pt(111)
,”
Phys. Rev. B
,
49
, pp.
2861
2868
.10.1103/PhysRevB.49.2861
7.
Maruyama
,
S.
, and
Kimura
,
T.
,
1999
, “
A Study on Thermal Resistance Over a Solid–Liquid Interface by the Molecular Dynamics Method
,”
Therm. Sci. Eng.
,
7
, pp.
63
68
.
8.
Spijker
,
P.
,
Markvoort
,
A. J.
,
Nedea
,
S. V.
, and
Hilbers
,
P. A. J.
,
2010
, “
Computation of Accommodation Coefficients and the Use of Velocity Correlation Profiles in Molecular Dynamics Simulations
,”
Phys. Rev. E
,
81
(
1
), p.
011203
.10.1103/PhysRevE.81.011203
9.
Head-Gordon
,
M.
,
Tully
,
J. C.
,
Rettner
,
C. T.
,
Mullins
,
C. B.
, and
Auerbach
,
D. J.
,
1991
, “
On the Nature of Trapping and Desorption at High Surface Temperatures. Theory and Experiments for the Ar–Pt (111) System
,”
J. Chem. Phys.
,
94
(2), pp.
1516
1527
.10.1063/1.460695
10.
Svanberg
,
M.
, and
Pettersson
,
J. B. C.
,
1996
, “
Survival of Noble Gas Clusters Scattering From Hot Metal Surfaces
,”
Chem. Phys. Lett.
,
263
(
5
), pp.
661
666
.10.1016/S0009-2614(96)01267-5
11.
Yamamoto
,
K.
,
2002
, “
Slip Flow Over a Smooth Platinum Surface
,”
JSME Int. J. Ser. B
,
45
(
4
), pp.
788
795
.10.1299/jsmeb.45.788
12.
Smith
,
R. J.
,
Kara
,
A.
, and
Holloway
,
S.
,
1993
, “
A Molecular Dynamics Study for the Trapping and Scattering of Ar/Pt(111)
,”
Surf. Sci.
,
281
(
3
), pp.
296
308
.10.1016/0039-6028(93)90642-W
13.
Lahaye
,
R. J. W. E.
,
Stolte
,
S.
,
Kleyn
,
A. W.
,
Smith
,
R. J.
, and
Holloway
,
S.
,
1994
, “
Site Dependent Energy Loss in Ar Scattering From Pt(111)
,”
Surf. Sci.
,
307–309
, pp.
187
192
.10.1016/0039-6028(94)90392-1
14.
Zeppenfeld
,
P.
,
Becher
,
U.
,
Kern
,
K.
,
David
,
R.
, and
Comsa
,
G.
,
1990
, “
Van Hove Anomaly in the Phonon Dispersion of Monolayer Ar/Pt (111)
,”
Phys. Rev. B
,
41
(
12
), pp.
8549
8552
.10.1103/PhysRevB.41.8549
15.
Sutton
,
A. P.
, and
Chen
,
J.
,
1990
, “
Long-Range Finnis–Sinclair Potentials
,”
Philos. Mag. Lett.
,
61
(
3
), pp.
139
146
.10.1080/09500839008206493
16.
Pham
,
T. T.
,
To
,
Q. D.
,
Lauriat
,
G.
,
Léonard
,
C.
, and
Hoang
,
V. V.
,
2012
, “
Effects of Surface Morphology and Anisotropy on the Tangential-Momentum Accommodation Coefficient Between Pt(100) and Ar
,”
Phys. Rev. E
,
86
, p.
051201
.10.1103/PhysRevE.86.051201
17.
Finger
,
G. W.
,
Kapat
,
J. S.
, and
Bhattacharya
,
A.
,
2007
, “
Molecular Dynamics Simulation of Adsorbent Layer Effect on Tangential Momentum Accommodation Coefficient
,”
ASME J. Fluid Eng.
,
129
(
1
), pp.
31
39
.10.1115/1.2375128
18.
Rettner
,
C. T.
,
1998
, “
Thermal and Tangential-Momentum Accommodation Coefficients for N2 Colliding With Surfaces of Relevance to Disk-Drive Air Bearings Derived From Molecular Beam Scattering
,”
IEEE Trans. Magn.
,
34
(
4
), pp.
2387
2395
.10.1109/20.703889
19.
Schlick
,
T.
,
2010
,
Molecular Modeling and Simulation: An Interdisciplinary Guide
,
Springer
, New York.
20.
Dadzie
,
S. K.
, and
Méolans
,
J. G.
,
2004
, “
Anisotropic Scattering Kernel: Generalized and Modified Maxwell Boundary Conditions
,”
J. Math. Phys.
,
45
(5), p.
1804
.10.1063/1.1690491
21.
Pham
,
T. T.
,
To
,
Q. D.
,
Lauriat
,
G.
, and
Léonard
,
C.
,
2013
, “
Tensorial Slip Theory for Gas Flows and Comparison With Molecular Dynamics Simulations Using an Anisotropic Gas–Wall Collision Mechanism
,”
Phys. Rev. E
,
87
, p.
053012
.10.1103/PhysRevE.87.053012
22.
To
,
Q. D.
,
Bercegeay
,
C.
,
Lauriat
,
G.
,
Léonard
,
C.
, and
Bonnet
,
G.
,
2010
, “
A Slip Model for Micro/Nano Gas Flows Induced by Body Forces
,”
Microfluid. Nanofluid.
,
8
(
3
), pp.
417
422
.10.1007/s10404-009-0532-4
23.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
,
New York
.
24.
Struchtrup
,
H.
,
2005
,
Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory
,
Springer
,
Berlin
.
25.
Liou
,
W. W.
, and
Fang
,
Y.
,
2005
,
Microfluid Mechanics: Principles and Modeling
,
McGraw-Hill
,
New York
.
26.
Bhattacharya
,
D. K.
, and
Lie
,
G. C.
,
1989
, “
Molecular Dynamics Simulations of Nonequilibrium Heat and Momentum Transport in Very Dilute Gases
,”
Phys. Rev. Lett.
,
62
(
8
), pp.
897
900
.10.1103/PhysRevLett.62.897
27.
Morris
,
D. L.
,
Hannon
,
L.
, and
Garcia
,
A. L.
,
1992
, “
Slip Length in a Dilute Gas
,”
Phys. Rev. A
,
46
(
8
), pp.
5279
5281
.10.1103/PhysRevA.46.5279
28.
To
,
Q. D.
,
Pham
,
T. T.
,
Lauriat
,
G.
, and
Léonard
,
C.
,
2012
, “
Molecular Dynamics Simulations of Pressure-Driven Flows and Comparison With Acceleration-Driven Flows
,”
Adv. Mech. Eng.
,
4
, p.
580763
.10.1155/2012/580763
29.
Bazant
,
M. Z.
, and
Vinogradova
,
O. I.
,
2008
, “
Tensorial Hydrodynamic Slip
,”
J. Fluid Mech.
,
613
, pp.
125
134
.10.1017/S002211200800356X
30.
Tehver
,
R.
,
Toigo
,
F.
,
Koplik
,
J.
, and
Banavar
,
J.
,
1998
, “
Thermal Walls in Computer Simulations
,”
Phys. Rev. E
,
57
, pp.
17
20
.
31.
Bhattacharya
,
D. K.
, and
Lie
,
G. C.
,
1991
, “
Nonequilibrium Gas Flow in the Transition Regime: A Molecular-Dynamics Study
,”
Phys. Rev. A
,
43
(
2
), pp.
761
767
.10.1103/PhysRevA.43.761
32.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford, UK
.
33.
Belyaev
,
A. V.
, and
Vinogradova
,
O. I.
,
2010
, “
Effective Slip in Pressure-Driven Flow Past Super-Hydrophobic Stripes
,”
J. Fluid Mech.
,
652
, pp.
489
499
.10.1017/S0022112010000741
34.
Priezjev
,
N. V.
,
2011
, “
Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces With Periodic and Random Nanoscale Textures
,”
J. Chem. Phys.
,
135
(
20
), p.
204704
.10.1063/1.3663384
35.
Albertoni
,
S.
,
Cercignani
,
C.
, and
Gotusso
,
L.
,
1963
, “
Numerical Evaluation of the Slip Coefficient
,”
Phys. Fluids
,
6
(
7
), pp.
993
996
.10.1063/1.1706857
You do not currently have access to this content.