The wetting kinetics of a water nanodroplet undergoing evaporation on a heated gold substrate were examined using molecular dynamics (MD) simulations. Various substrate and initial droplet temperatures were used to obtain different evaporation rates. The water molecule absorption–desorption behavior was analyzed in the vicinity of the contact line region to show the microscopic details of the spreading–evaporating droplet. Increasing substrate temperatures greatly affected the dynamic wetting process, while the initial water droplet temperature had very little effect. The effects of droplet size and substrate wettability on the droplet spreading–evaporating process were also examined. The radius versus time curves agree well with molecular kinetics theory (MKT) for spreading without evaporation but differ from MKT when the spreading induced evaporation. The enhancement of the wetting kinetics by the evaporation can be attributed to the reduction of the liquid–vapor surface tension and the increased water molecule motion in the contact line region and in the bulk droplet.

References

1.
de Gennes
,
P. G.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), pp.
827
863
.10.1103/RevModPhys.57.827
2.
Bonn
,
D.
,
Eggers
,
J.
,
Indekeu
,
J.
,
Meunier
,
J.
, and
Rolley
,
E.
,
2009
, “
Wetting and Spreading
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
739
805
.10.1103/RevModPhys.81.739
3.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.10.1103/RevModPhys.69.931
4.
Birdi
,
K. S.
, and
Vu
,
D. T.
,
1989
, “
A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface
,”
J. Phys. Chem.
,
93
(
9
), pp.
3702
3703
.10.1021/j100346a065
5.
Sadhal
,
S. S.
, and
Plesset
,
M. S.
,
1979
, “
Effect of Solid Properties and Contact-Angle in Dropwise Condensation and Evaporation
,”
ASME J. Heat Transfer
,
101
(
1
), pp.
48
54
.10.1115/1.3450934
6.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Wittten
,
T. A.
,
2000
, “
Contact Line Deposit in an Evaporating Drop
,”
Phys. Rev. E
,
62
(
1
), pp.
756
765
.10.1103/PhysRevE.62.756
7.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.10.1021/jp0118322
8.
Bourges-Monnier
,
C.
, and
Shanahan
,
M. E. R.
,
1995
, “
Influence of Evaporation on Contact Angle
,”
Langmuir
,
11
(
7
), pp.
2820
2829
.10.1021/la00007a076
9.
Neumann
,
A. W.
, and
Tanner
,
W.
,
1970
, “
The Temperature Dependence of Contact Angles—Polytetrafluoroethylene/n-decane
,”
J. Colloid Interface Sci.
,
34
(
1
), pp.
1
8
.10.1016/0021-9797(70)90252-3
10.
Wang
,
X. D.
,
Lee
,
D. J.
,
Peng
,
X. F.
, and
Lai
,
J. Y.
,
2007
, “
Spreading Dynamics and Dynamic Contact Angle of Non-Newtonian Fluids
,”
Langmuir
,
23
(
15
), pp.
8042
8047
.10.1021/la0701125
11.
Liang
,
Z. P.
,
Wang
,
X. D.
,
Duan
,
Y. Y.
, and
Min
,
Q.
,
2012
, “
Energy-Based Model for Capillary Spreading of Power-Law Liquids on a Horizontal Plane
,”
Colloids Surf., A
,
403
(
5
), pp.
155
163
.10.1016/j.colsurfa.2012.04.009
12.
Seveno
,
D.
,
Dinter
,
N.
, and
De Coninck
,
J.
,
2010
, “
Wetting Dynamics of Drop Spreading. New Evidence for the Microscopic Validity of the Molecular-Kinetic Theory
,”
Langmuir
,
26
(
18
), pp.
14642
14647
.10.1021/la102412s
13.
Joshi
,
A. S.
, and
Sun
,
Y.
,
2010
, “
Wetting Dynamics and Particle Deposition for an Evaporating Colloidal Drop: A Lattice Boltzmann Study
,”
Phys. Rev. E
,
82
(
18
), p.
041401
.10.1103/PhysRevE.82.041401
14.
Yan
,
Y. Y.
, and
Zu
,
Y. Q.
,
2007
, “
A Lattice Boltzmann Method for Incompressible Two-Phase Flows on Partial Wetting Surface With Large Density Ratio
,”
J. Comput. Phys.
,
227
(
1
), pp.
763
775
.10.1016/j.jcp.2007.08.010
15.
Attar
,
E.
, and
Koerner
,
C.
,
2009
, “
Lattice Boltzmann Method for Dynamic Wetting Problems
,”
J. Colloid Interface Sci.
,
335
(
1
), pp.
84
93
.10.1016/j.jcis.2009.02.055
16.
Blake
,
T. D.
,
Clarke
,
A.
,
Coninck
,
J. D.
, and
Ruijter
,
M. J.
,
1997
, “
Contact Angle Relaxation During Droplet Spreading: Comparison Between Molecular Kinetic Theory and Molecular Dynamics
,”
Langmuir
,
13
(
7
), pp.
2164
2166
.10.1021/la962004g
17.
Coninck
,
J. D.
,
D’Ortona
,
U.
,
Koplik
,
J.
, and
Banavar
,
J. R.
,
1995
, “
Terraced Spreading of Chain Molecules Via Molecular Dynamics
,”
Phys. Rev. Lett.
,
76
(
6
), pp.
928
931
.10.1103/PhysRevLett.74.928
18.
He
,
G.
, and
Hadjiconstantinou
,
N. G.
,
2003
, “
A Molecular View of Tanner’s Law: Molecular Dynamics Simulation of Droplet Spreading
,”
J. Fluid Mech.
,
497
, pp.
123
132
.10.1017/S0022112003006839
19.
Yang
,
J. X.
,
Koplik
,
J.
, and
Banavar
,
J. R.
,
1992
, “
Terraced Spreading of Simple Liquids on Solid Surfaces
,”
Phys. Rev. A
,
46
(
12
), pp.
7738
7749
.10.1103/PhysRevA.46.7738
20.
Coninck
,
J. D.
, and
Blake
,
T. D.
,
2008
, “
Wetting and Molecular Dynamics Simulations of Simple Liquids
,”
Annu. Rev. Mater. Res.
,
38
, pp.
1
22
.10.1146/annurev.matsci.38.060407.130339
21.
Lu
,
G.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Lee
,
D.-J.
,
2011
, “
Internal Flow in Evaporating Droplet on Heated Solid Surface
,”
Int. J. Heat Mass Transfer,
54
(
19–20
), pp.
4437
4447
.10.1016/j.ijheatmasstransfer.2011.04.039
22.
Bhardwaj
,
R.
,
Fang
,
X.-H.
, and
Attinger
,
D.
,
2009
, “
Pattern Formation During the Evaporation of a Colloidal Nanoliter Drop: A Numerical and Experimental Study
,”
New J. Phys.
,
11
(
7
), pp.
1
33
.10.1088/1367-2630/11/7/075020
23.
Strotos
,
G.
,
Gavaises
,
M.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
,
2008
, “
Numerical Investigation on the Evaporation of Droplets Depositing on Heated Surfaces at Low Weber Numbers
,”
Int. J. Heat Mass Transfer,
51
(
7–8
), pp.
1516
1529
.10.1016/j.ijheatmasstransfer.2007.07.045
24.
Huh
,
C.
, and
Scriven
,
L. E.
,
1971
, “
Hydrodynamic Model of Steady Movement of a Solid/Liquid/Fluid Contact Line
,”
J. Colloid Interface Sci.
,
35
(
1
), pp.
85
101
.10.1016/0021-9797(71)90188-3
25.
Chen
,
W. K.
,
Koplik
,
J.
, and
Kretzschmar
,
I.
,
2013
, “
Molecular Dynamics Simulations of the Evaporation of Particle-Laden Droplets
,”
Phys. Rev. E
,
87
(
5
), p.
052404
.10.1103/PhysRevE.87.052404
26.
Zhang
,
J. G.
,
Leroy
,
F.
, and
Muller-Plathe
,
F.
,
2013
, “
Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study
,”
Langmuir
,
29
(
31
), pp.
9770
9782
.10.1021/la401655h
27.
Yang
,
X.
, and
Yan
,
Y. Y.
,
2011
, “
Molecular Dynamics Simulation for Microscope Insight of Water Evaporation on a Heated Magnesium Surface
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
640
648
.10.1016/j.applthermaleng.2010.08.019
28.
Hwang
,
C. C.
,
Lee
,
S. C.
,
Hsieh
,
J. Y.
, and
Huang
,
F. C.
,
1999
, “
A Study of Temperature Effects on Drop Spreading by the Molecular Dynamics Simulation
,”
J. Phys. Soc. Jpn.
,
68
(
11
), pp.
3742
3743
.10.1143/JPSJ.68.3742
29.
Jorgensen
,
W. L.
,
Chandrasekhar
,
J.
,
Madura
,
J. D.
,
Impey
,
R. W.
, and
Klein
,
M. L.
,
1983
, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
J. Chem. Phys.
,
79
(
2
), pp.
926
935
.10.1063/1.445869
30.
Ryckaert
,
J. P.
,
Ciccotti
,
G.
, and
Berendsen
,
H. J. C.
,
1977
, “
Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes
,”
J. Comput. Phys.
,
23
(
3
), pp.
327
341
.10.1016/0021-9991(77)90098-5
31.
Daw
,
M. S.
,
Foiles
,
S. M.
, and
Baskes
,
M. I.
,
1993
, “
The Embedded Atom Method: A Review of Theory and Applications
,”
Mater. Sci. Rep.
,
9
(
7–8
), pp.
251
310
.10.1016/0920-2307(93)90001-U
32.
Schravendijk
,
P.
,
van der Vegt
,
N.
,
Site
,
L. D.
, and
Kremer
,
K.
,
2005
, “
Dual-Scale Modeling of Benzene Adsorption Onto Ni(111) and Au(111) Surfaces in Explicit Water
,”
ChemPhysChem
,
6
(
9
), pp.
1866
1871
.10.1002/cphc.200400591
33.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
34.
Blake
,
T. D.
, and
Haynes
,
J. M.
,
1969
, “
Kinetics of Liquid/Liquid Displacement
,”
J. Colloid Interface Sci.
,
30
(
3
), pp.
421
423
.10.1016/0021-9797(69)90411-1
35.
Blake
,
T. D.
,
2006
, “
The Physics of Moving Wetting Lines
,”
J. Colloid Interface Sci.
,
299
(
1
), pp.
1
13
.10.1016/j.jcis.2006.03.051
36.
Adam
,
N. K.
,
1941
,
The Physics and Chemistry of Surfaces
,
Oxford University Press
,
London
.
37.
Dean
,
J. A.
,
1967
,
Lange’s Handbook of Chemistry
, 10th ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.