A model based on the works of Buongiorno, which includes the effects of Brownian motion and thermophoresis, is used to develop the governing equations for convection in nanofluids. The analysis includes examples with water and ethylene glycol as the base fluids and nanoparticles of Cu and Al2O3. An assumption of zero nanoparticle flux is used at the surface of the plate to make the model more physically realistic. The model accounts for the effects of both Brownian motion and thermophoresis in the mass boundary condition. Using suitable transformations, the governing partial differential equations are converted into ordinary differential equations which are solved numerically. The dimensionless velocity, temperature, and concentration gradients are used in the second law analysis to determine heat and mass transfer rates. It is shown that the dimensionless entropy generation rate strongly depends upon the solid volume fraction of the nanoparticles, local Reynolds number, and group parameters.

References

1.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
2.
Bejan
,
A.
,
1987
, “
The Thermodynamic Design of Heat and Mass Transfer Processes and Devices
,”
Int. J. Heat Fluid Flow
,
8
(
4
), pp.
258
276
.10.1016/0142-727X(87)90062-2
3.
Poulikakos
,
D.
, and
Johnson
,
J. M.
,
1989
, “
Second Law Analysis of Combined Heat and Mass Transfer Phenomena in External Flow
,”
Energy
,
14
(
2
), pp.
67
73
.10.1016/0360-5442(89)90080-7
4.
Narayan
,
G. P.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Entropy Generation Minimization of Combined Heat and Mass Transfer Devices
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
2057
2066
.10.1016/j.ijthermalsci.2010.04.024
5.
San
,
J. Y.
,
Worek
,
W. M.
, and
Lavan
,
Z.
,
1987
, “
Entropy Generation in Combined Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1359
1369
.10.1016/0017-9310(87)90168-2
6.
Carrington
,
C. G.
, and
Sun
,
Z. F.
,
1991
, “
Second Law Analysis of Combined Heat and Mass Transfer Phenomena
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2767
2773
.10.1016/0017-9310(91)90235-7
7.
Carrington
,
C. G.
, and
Sun
,
Z. F.
,
1992
, “
Second Law Analysis of Combined Heat and Mass Transfer in Internal and External Flows
,”
Int. J. Heat Fluid Flow
,
13
(
1
), pp.
65
70
.10.1016/0142-727X(92)90060-M
8.
Poulikakos
,
D.
, and
Johnson
,
J. M.
,
1989
, “
Second Law Analysis of Combined Heat and Mass Transfer Phenomena in External Flow
,”
Energy
,
14
(
2
), pp.
67
73
.10.1016/0360-5442(89)90080-7
9.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, ASME, New York, pp.
99
105
.
10.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
11.
Mahian
,
O.
,
Kianifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.10.1016/j.ijheatmasstransfer.2012.10.037
12.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
.10.1016/j.ijheatmasstransfer.2010.06.016
13.
Mahian
,
O.
,
Kianifar
,
A.
,
Kleinstreuer
,
C.
,
Al-Nimr
,
M. A.
,
Pop
,
I.
,
Sahin
,
A. Z. S.
, and
Wongwises
,
S.
,
2013
, “
A Review of Entropy Generation in Nanofluid Flow
,”
Int. J. Heat Mass Transfer
,
65
, pp.
514
532
.10.1016/j.ijheatmasstransfer.2013.06.010
14.
Mahian
,
O.
,
Mahmud
,
S.
, and
Heris
,
S. Z.
,
2012
, “
Effect of Uncertainties in Physical Properties on Entropy Generation Between Two Rotating Cylinders With Nanofluids
,”
ASME J. Heat Transfer
,
134
(
10
), pp.
1
9
.10.1115/1.4006662
15.
Moghaddami
,
M.
,
Mohammadzade
,
A.
, and
Esfehani
,
S. A. V.
,
2011
, “
Second Law Analysis of Nanofluid Flow
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1397
1405
.10.1016/j.enconman.2010.10.002
16.
Shahi
,
M.
,
Mahmoudi
,
A. H.
, and
Raouf
,
A. H.
,
2011
, “
Entropy Generation Due to Natural Convection Cooling of a Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
972
983
.10.1016/j.icheatmasstransfer.2011.04.008
17.
Matin
,
M. H.
, and
Khan
,
W. A.
,
2013
, “
Entropy Generation Analysis of Heat and Mass Transfer in Mixed Electrokinetically and Pressure Driven Flow Through a Slit Microchannel
,”
Energy
,
56
, pp.
207
217
.10.1016/j.energy.2013.04.058
18.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122401
.10.1115/1.4002395
19.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2014
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate: A Revised Model
,”
Int. J. Therm. Sci.
,
77
, pp.
126
129
.10.1016/j.ijthermalsci.2013.10.007
20.
Maiga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.10.1016/j.ijheatfluidflow.2005.02.004
21.
Paoletti
,
S.
,
Rispoli
,
F.
, and
Sciubba
,
E.
,
1989
, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages
,”
ASME AES
,
10
(
21
), pp.
21
29
.
You do not currently have access to this content.