The thermal conductivity of silica aerogel developed in this research program was measured using the transient hot-wire technique. The thermal conductivity of monolithic samples drops significantly from 9.3 mW/m · K to 3.2 mW/m · K with modest pressure reduction from 1 atm to 0.1 atm. The same aerogel in granular form has a thermal conductivity of 15.0 mW/m · K at ambient gas pressure with a modest compression applied to compact the granules and reduce the air void sizes. Radiation heat transfer in the hot-wire test may not be representative of its contribution in large scale applications. Measurements of the monochromatic extinction coefficient over the wavelengths of interest resulted in a Rosseland mean extinction coefficient of 2400 m−1 at 300 K. The small thermal penetration distance during the hot-wire measurements suggest that in actual use radiation could contribute approximately 2.5 mW/m · K with a possible upper limit of 3.0 mW/m · K to the effective thermal conductivity over that measured using the transient hot-wire method.

References

References
1.
Riffat
,
S.
, and
Qiu
,
G.
,
2013
, “
A Review of State-of-Art Aerogel Applications in Buildings
,”
Int. J. Low-Carbon Technol.
,
8
(
1
), pp.
1
6
.10.1093/ijlct/cts001
2.
Baetens
,
R.
,
Bjorn
,
P.
, and
Gustavsen
,
A.
,
2011
, “
Aerogel Insulation for Building Applications: A State–of-the-Art Review
,”
Energy Build.
,
43
(
4
), pp.
761
769
.10.1016/j.enbuild.2010.12.012
3.
Caps
,
R.
, and
Fricke
,
J.
,
2004
, “
Aerogels for Thermal Insulation
,”
Sol-Gel Technologies for Glass Producers and Users
,
M. A.
Aegerter
and
M.
Mennig
, eds.,
Kluwer Academic
,
Boston
, pp.
349
353
.10.1007/978-0-387-88953-5_46
4.
Heinemann
,
U.
,
Caps
,
R.
, and
Fricke
,
J.
,
1996
, “
Radiation-Conduction Interaction: An Investigation on Silica Aerogels
,”
Int. J. Heat Mass Transfer
,
39
(
10
), pp.
2115
2130
.10.1016/0017-9310(95)00313-4
5.
Lee
,
D.
,
Stevens
,
P. C.
,
Zeng
,
S. Q.
, and
Hunt
,
A.
,
1995
, “
Thermal Characterization of Carbon-Opacified Silica Aerogels
,”
J. Non-Cryst. Solids
,
186
, pp.
285
290
.10.1016/0022-3093(95)00055-0
6.
Rigacci
,
A.
, and
Tantot-Neirac
,
M.
,
2005
, “
Aerogel-Like Materials for Building Super-Insulation
,”
2nd International Symposium on Nanotechnology in Construction
,
Bilbao, Spain
, Nov. 13–16, pp.
383
393
.
7.
Zeng
,
S. Q.
,
Hunt
,
A.
, and
Greif
,
R.
,
1995
, “
Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
1055
1058
.10.1115/1.2836281
8.
Wei
,
G.
,
Liu
,
Y.
,
Zhang
,
X.
,
Yu
,
F.
, and
Du
,
X.
,
2011
, “
Thermal Conductivities Study of Silica Aerogel and Its Composite Insulation Materials
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2355
2366
.10.1016/j.ijheatmasstransfer.2011.02.026
9.
Wei
,
G.
,
Liu
,
Y.
,
Du
,
X.
, and
Zhang
,
X.
,
2012
, “
Gaseous Conductivity Study on Silica Aerogel and Its Composite Insulation Materials
,”
ASME J. Heat Transfer
,
134
(
4
), p.
041301
.10.1115/1.4004170
10.
Zeng
,
S.
,
Hunt
,
A.
,
Cao
,
W.
, and
Grief
,
R.
,
1994
, “
Pore Size Distribution and Apparent Gas Thermal Conductivity of Silica Aerogel
,”
ASME J. Heat Transfer
,
116
(
3
), pp.
756
759
.10.1115/1.2910933
11.
Zeng
,
S.
,
Hunt
,
A.
, and
Grief
,
R.
,
1995
, “
Theoretical Model of Carbon Content to Minimize Heat Transfer in Silica Aerogel
,”
J. Non-Cryst. Solids
,
186
, pp.
271
277
.10.1016/0022-3093(95)00076-3
12.
Cohen
,
E.
, and
Glicksman
,
L.
,
2014
, “
Analysis of the Transient Hot-Wire Method to Measure Thermal Conductivity of Silica Aerogel: Influence of Wire Length, and Radiation Properties
,”
ASME J. Heat Transfer
,
136
(
4
), p.
04130
.10.1115/1.4025921
13.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon Press
,
Oxford, UK
.
14.
Siegel
,
R.
, and
Howell
,
J. R.
,
1981
,
Thermal Radiation Heat Transfer
,
2nd ed.
,
Hemisphere
,
Washington, DC
.
15.
Rettelbach
,
T.
,
Sauberlich
,
J.
,
Korder
,
S.
, and
Fricke
,
J.
,
1995
, “
Thermal Conductivity of Silica Aerogel Powders at Temperatures From 10 to 275 K
,”
J. Non-Cryst. Solids
,
186
, pp.
278
284
.10.1016/0022-3093(95)00051-8
16.
Gross
,
U.
, and
Tran
,
L. T. S.
,
2004
, “
Radiation Effects on Transient Hot-Wire Measurements in Absorbing and Emitting Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3279
3290
.10.1016/j.ijheatmasstransfer.2004.02.014
17.
Zuo
,
Y.
,
2010
, “
Preparation of Silica Aerogels With Improved Mechanical Properties and Extremely Low Thermal Conductivities Through Modified Sol-Gel Process
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Reim
,
M.
,
Reichenauer
,
G.
,
Korner
,
W.
,
Manara
,
J.
,
Arduini-Schuster
,
M.
,
Korder
,
S.
,
Beck
,
A.
, and
Fricke
,
J.
,
2004
, “
Silica-Aerogel Granulate—Structural, Optical, and Thermal Properties
,”
J. Non-Cryst. Solids
,
350
, pp.
358
363
.10.1016/j.jnoncrysol.2004.06.048
19.
Berglund
,
L.
,
2011
, private communication.
20.
Goutierre
,
T.
,
2011
, “
Advanced Thermal Insulation for Energy Efficient Buildings: Structural Performance of Aerogel Composite Panels
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
21.
Microstructured Materials Group at Lawrence Berkeley National Laboratory
, pre-
2004
, “
Science of Silica Aerogels: Physical Properties
,” Accessed Apr. 1,
2015
, http://energy.lbl.gov/ecs/aerogels/sa-physical.html
You do not currently have access to this content.