Recent advances in condensing surfaces with hybrid architectures of superhydrophobic/hydrophilic patterns allow us to decrease the nucleation energy barrier and spatially control the water condensation. However, the condensed water is susceptible to the large pinning force of the hydrophilic area, leading to an ultimate flooding. Here, we demonstrate a hierarchical nanostructured surface with patterned high wetting contrast to achieve a natural transition from filmwise-to-dropwise condensation, which reconciles the existing problems. The energy-dispersive X-ray spectroscopy (EDX) indicates that the fluorinated hydrophobic coating conformably covers the nanostructures except for the tops of micropillars, which are covered by hydrophilic silicon dioxide (FIG 1), resulting in an extreme wetting contrast. Condensation on the hybrid surface was observed in the environmental scanning electron microscope (ESEM) and ambient conditions with controlled humidity. Water preferentially nucleates on the top of micropillars and exhibits a rapid droplet growth (FIG 2). The enhancement is attributed to the filmwise-to-dropwise transition induced by the unique architectures and wetting features of the hybrid surface (FIG 3). The water embryos initially nucleate on the hydrophilic tops and quickly grow to a liquid film covering the whole top area. Since the superhydrophobic surrounding confines the spreading of condensed water, the localized liquid film gradually transits to an isolated spherical droplet as it grows. Remarkably, the condensate morphology transition activates an unusual droplet self-propelling despite the presence of abundant hydrophilic patches. It is important to note that such coalescence-induced jumping is dependent on the size of hydrophilic patches, that is, for larger hydrophilic patches, the energy released by coalescence may not overcome the increased droplet pinning, resulting in an immobile coalescence (FIG 4). The droplet departure ensures the recurrence of filmwise-to-dropwise transition, thus prevents the water accumulation in continuous condensation. These visualizations reveal the undiscovered impact of heterogeneous wettability and architectures on the morphology transition of the condensed water, and provide important insights into the surface design and optimization for enhanced condensation.
Skip Nav Destination
Article navigation
Photo Gallery
Filmwise-to-Dropwise Condensation Transition Enabled by Patterned High Wetting Contrast
Zuankai Wang
Zuankai Wang
Search for other works by this author on:
Youmin Hou
Miao Yu
Xuemei Chen
Zuankai Wang
Corresponding author.
J. Heat Transfer. Aug 2015, 137(8): 080907
Published Online: August 1, 2015
Article history
Received:
March 31, 2015
Revised:
April 2, 2015
Online:
June 1, 2015
Citation
Hou, Y., Yu, M., Chen, X., and Wang, Z. (August 1, 2015). "Filmwise-to-Dropwise Condensation Transition Enabled by Patterned High Wetting Contrast." ASME. J. Heat Transfer. August 2015; 137(8): 080907. https://doi.org/10.1115/1.4030454
Download citation file:
Get Email Alerts
Cited By
Related Articles
Nucleate Boiling Comparison between Teflon-Coated Plain Copper and Cu-HTCMC in Water
J. Heat Transfer (August,2018)
Nucleate Boiling Heat Transfer on Plain and Microporous Surfaces in Subcooled Water
J. Heat Transfer (August,2017)
Characteristics of Droplet Growth Behavior on Hydrophobic Micro-textured Surfaces
J. Heat Transfer (August,2015)
A rebounding droplet impacting on a static droplet
J. Heat Transfer (August,2015)
Related Proceedings Papers
Related Chapters
Introduction
Two-Phase Heat Transfer
Liquid Cooled Systems
Thermal Management of Telecommunications Equipment
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment