The overall film cooling performance of three novel film cooling holes has been numerically investigated in this paper, including adiabatic film cooling effectiveness, heat transfer coefficients as well as discharge coefficients. The novel holes were proposed to help cooling injection spread laterally on a cooled endwall surface. Three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations with shear stress transport (SST) k-ω turbulence model were solved to perform the simulation based on turbulence model validation by using the relevant experimental data. Additionally, the grid independent test was also carried out. With a mainstream Mach number of 0.3, flow conditions applied in the simulation vary in a wide range of blowing ratio from 0.5 to 2.5. The coolant-to-mainstream density ratio (DR) is fixed at 1.75, which can be more approximate to real typical gas turbine applications. The numerical results for the cylindrical hole are in good agreement with the experimental data. It is found that the flow structures and temperature distributions downstream of the cooling injection are significantly changed by shaping the cooling hole exit. For a low blowing ratio of 0.5, the three novel shaped cooling holes present similar film cooling performances with the traditional cylindrical hole, while with the blowing ratio increasing, all the three novel cooling holes perform better, of which the bean-shaped hole is considered to be the best one in terms of the overall film cooling performance.

References

1.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.10.1615/HeatTransRes.v41.i6.40
2.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
3.
Kamotani
,
Y.
, and
Greber
,
I.
,
1972
, “
Experiments on Turbulent Jet in a Crossflow
,”
AIAA J.
,
10
(
11
), pp.
1425
1429
.10.2514/3.50386
4.
Margason
,
R. J.
,
1993
, “
Fifty Years of Jet in Cross Flow Research
,” Report No. AGARD-CP-534, pp.
1
41
.
5.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
6.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-045. 10.1115/97-GT-045
7.
Johnston
,
J. P.
,
Mosier
,
B. P.
, and
Khan
,
Z. U.
,
2002
, “
Vortex Generating Jets; Effects of Jet-Hole Inlet Geometry
,”
Int. J. Heat Fluid Flow
,
23
(
6
), pp.
744
749
.10.1016/S0142-727X(02)00138-8
8.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
9.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.10.1115/1.2841410
10.
Lu
,
Y.
,
2007
, “
Effect of Hole Configurations on Film Cooling From Cylindrical Inclined Holes for the Application to Gas Turbine Blades
,” Ph.D. thesis, Louisiana State University, Baton Rouge, LA.
11.
Kross
,
B.
, and
Pfitzner
,
M.
,
2012
, “
Numerical and Experimental Investigation of the Film Cooling Effectiveness and Temperature Fields behind a Novel Trench
,”
ASME
Paper No. GT2012-68125. 10.1115/GT2012-68125
12.
Immarigeon
,
A.
, and
Hassan
,
I.
,
2006
, “
An Advanced Impingement/Film Cooling Scheme for Gas Turbines—Numerical Study
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
4
), pp.
470
493
.10.1108/09615530610653091
13.
Zhang
,
X. Z.
, and
Hassan
,
I.
,
2006
, “
Film Cooling Effectiveness of an Advanced-Louver Cooling Scheme for Gas Turbines
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
4
), pp.
754
763
.10.2514/1.18898
14.
Okita
,
Y.
, and
Nishiura
,
M.
,
2007
, “
Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry
,”
ASME J. Turbomach.
,
129
(
2
), pp.
331
339
.10.1115/1.2437781
15.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2012
, “
Performance Evaluation of a Novel Film-Cooling Hole
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101702
.10.1115/1.4006752
16.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.10.1115/1.1459735
17.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.10.1115/1.1459736
18.
Papell
,
S. S.
,
1984
, “
Vortex Generating Flow Passage Design for Increased Film Cooling Effectiveness and Surface Coverage
,”
ASME
Paper No. 84-HT-22.
19.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1996
, “
The Effect of Hole Geometry on Lift-Off Behavior of Coolant Jets
,”
AIAA
Paper No. AIAA 96-0618.10.2514/6.1996-618
20.
Bunker
,
R. S.
,
2013
, “
Turbine Heat Transfer and Cooling: An Overview
,”
ASME
Paper No. GT2013-94174.10.1115/GT2013-94174
21.
Ansys Inc.
,
2008
,
CFX-11.0 Solver Theory
,
Ansys Inc.
, Canonsburg, PA.
22.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.10.1115/1.4006290
23.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.10.1115/1.4006287
24.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison of the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME
Paper No. GT2008-51036. 10.1115/GT2008-51036
25.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.10.1115/1.1515336
26.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.10.1115/1.1731395
27.
Wittig
,
S.
,
Schulz
,
A.
,
Gritsch
,
M.
, and
Thole
,
K. A.
,
1996
, “
Transonic Film Cooling Investigations: Effects of Hole Shapes and Orientations
,”
ASME
Paper No. 96-GT-222.10.1115/96-GT-222
28.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.10.1115/1.2019315
29.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2005
, “
Film Cooling Effectiveness From a Single Scaled-Up Fan-Shaped Hole: A CFD Simulation of Adiabatic and Conjugate Heat Transfer Models
,”
ASME
Paper No. GT2005-68431. 10.1115/GT2005-68431
30.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2009
, “
Optimization of a Cylindrical Film Cooling Hole Using Surrogate Modeling
,”
Numer. Heat Transfer, Part A
,
55
(
4
), pp.
362
380
.10.1080/10407780902720858
31.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2011
, “
Surrogate Based Optimization of a Laidback Fan-Shaped Hole for Film-Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
226
238
.10.1016/j.ijheatfluidflow.2010.08.007
You do not currently have access to this content.