The effect of a variety of surface enhancements on the heat transfer achieved with an array of impinging jets is experimentally investigated using the dielectric fluid HFE-7100 at different volumetric flow rates. The performance of a 5 × 5 array of jets, each 0.75 mm in diameter, is compared to that of a single 3.75 mm diameter jet with the same total open orifice area, in single-and two-phase operation. Four different target copper surfaces are evaluated: a baseline smooth flat surface, a flat surface coated with a microporous layer, a surface with macroscale area enhancement (extended square pin–fins), and a hybrid surface on which the pin–fins are coated with the microporous layer; area-averaged heat transfer and pressure drop measurements are reported. The array of jets enhances the single-phase heat transfer coefficients by 1.13–1.29 times and extends the critical heat flux (CHF) on all surfaces compared to the single jet at the same volumetric flow rates. Additionally, the array greatly enhances the heat flux dissipation capability of the hybrid coated pin–fin surface, extending CHF by 1.89–2.33 times compared to the single jet on this surface, with a minimal increase in pressure drop. The jet array coupled with the hybrid enhancement dissipates a maximum heat flux of 205.8 W/cm2 (heat input of 1.33 kW) at a flow rate of 1800 ml/min (corresponding to a jet diameter-based Reynolds number of 7800) with a pressure drop incurred of only 10.9 kPa. Compared to the single jet impinging on the smooth flat surface, the array of jets on the coated pin–fin enhanced surface increased CHF by a factor of over four at all flow rates.

References

References
1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
2.
Goldstein
,
R. J.
, and
Timmers
,
J. F.
,
1982
, “
Visualization of Heat Transfer From Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
25
(
12
), pp.
1857
1868
.10.1016/0017-9310(82)90108-9
3.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
4.
Maddox
,
D. E.
, and
Bar-Cohen
,
A.
,
1994
, “
Thermofluid Design of Single-Phase Submerged-Jet Impingement Cooling for Electronic Components
,”
ASME J. Electron. Packag.
,
116
(
3
), pp.
237
240
.10.1115/1.2905692
5.
Garimella
,
S. V.
, and
Schroeder
,
V. P.
,
2001
, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
165
172
.10.1115/1.1371923
6.
Rau
,
M. J.
, and
Garimella
,
S. V.
,
2013
, “
Local Two-Phase Heat Transfer From Arrays of Confined and Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
67
, pp.
487
498
.10.1016/j.ijheatmasstransfer.2013.08.041
7.
Copeland
,
D.
,
1998
, “
Single-Phase and Boiling Cooling of a Small Heat Source by Multiple Nozzle Jet Impingement
,”
Int. J. Microelectron. Packag.
,
1
(2), pp.
105
113
.
8.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
1999
, “
Performance Characteristics of Confined Impinging Air Jets With Surface Enhancement
,”
ASME Adv. Electron. Packag.
,
26
(
2
), pp.
2009
2014
.
9.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
1999
, “
Experimental Optimization of Confined Air Jet Impingement on a Pin–Fin Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
3
), pp.
399
404
.10.1109/6144.796542
10.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
,
2000
, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin–Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
2
), pp.
300
308
.10.1109/6144.846768
11.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
,
2000
, “
Heat Transfer From Pin–Fin Heat Sinks Under Multiple Impinging Jets
,”
IEEE Trans. Adv. Packag.
,
23
(
1
), pp.
113
120
.10.1109/6040.826769
12.
Monde
,
M.
,
1987
, “
Critical Heat Flux in Saturated Forced Convection Boiling on a Heated Disk With an Impinging Jet
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
991
996
.10.1115/1.3248215
13.
Ma
,
C.-F.
, and
Bergles
,
A. E.
,
1983
, “
Boiling Jet Impingement Cooling of Simulated Microelectronic Chips
,”
Heat Transfer Electron. Equip., HTD
,
28
, pp.
5
12
.
14.
Zhou
,
D. W.
, and
Ma
,
C.-F.
,
2004
, “
Local Jet Impingement Boiling Heat Transfer With R113
,”
Heat Mass Transfer
,
40
(
6–7
), pp.
539
549
.10.1007/s0023-003-0463-7
15.
Mitsutake
,
Y.
, and
Monde
,
M.
,
2003
, “
Ultra High Critical Heat Flux During Forced Flow Boiling Heat Transfer With an Impinging Jet
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1038
1045
.10.1115/1.1621899
16.
Rau
,
M. J.
, and
Garimella
,
S. V.
,
2014
, “
Confined Jet Impingement With Boiling on a Variety of Enhanced Surfaces
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101503
.10.1115/1.4027942
17.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1992
, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux From an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
764
768
.10.1115/1.2911348
18.
Copeland
,
D.
,
1996
, “
Single-Phase and Boiling Cooling of Small Pin–Fin Arrays by Multiple Nozzle Jet Impingement
,”
ASME J. Electron. Packag.
,
118
(
1
), pp.
21
26
.10.1115/1.2792122
19.
Lay
,
J. H.
, and
Dhir
,
V. K.
,
1995
, “
Nucleate Boiling Heat Flux Enhancement on Macro/Micro-Structured Surfaces Cooled by an Impinging Jet
,”
J. Enhanced Heat Transfer
,
2
(
3
), pp.
177
188
.10.1615/JEnhHeatTransf.v2.i3.10
20.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin–Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
509
516
.10.1115/1.1288708
21.
Nakayama
,
W.
,
Nakajima
,
T.
, and
Hirasawa
,
S.
,
1984
, “
Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling of Microelectronic Components
,”
ASME
Paper No. 84-WA/HT-89.
22.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Micro-Porous Cylindrical Surfaces in Saturated FC-87 and R-123
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
319
325
.10.1115/1.2824226
23.
3M
,
2002
,
3M Novec Engineered Fluid HFE-7100 for Heat Transfer
,
3M
,
St. Paul, MN
, pp.
1
8
.
24.
Tuma
,
P. E.
,
2011
, “
Design Considerations Relating to Non-Thermal Aspects of Passive 2-Phase Immersion Cooling
,”
Proceedings of the 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
San Jose, CA
, pp.
1
9
.
25.
Marto
,
P. J.
, and
Lepere
,
Lt. V. J.
,
1982
, “
Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
292
299
.10.1115/1.3245086
26.
Li
,
C.-Y.
, and
Garimella
,
S. V.
,
2001
, “
Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3471
3480
.10.1016/S0017-9310(01)00003-5
27.
Moreno
,
G.
,
Narumanchi
,
S.
,
Venson
,
T.
, and
Bennion
,
K.
,
2013
, “
Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031004
.10.1115/1.4023308
28.
Webb
,
R. L.
,
1983
, “
Nucleate Boiling on Porous Coated Surface
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
71
82
.10.1080/01457638108939610
You do not currently have access to this content.