Silicon films of submicrometer thickness play a central role in many advanced technologies for computation and energy conversion. Numerous thermal conductivity data for silicon films are available in the literature, but they are mainly for the lateral, or in-plane, direction for both polycrystalline and single crystalline films. Here, we use time-domain thermoreflectance (TDTR), transmission electron microscopy, and semiclassical phonon transport theory to investigate thermal conduction normal to polycrystalline silicon (polysilicon) films of thickness 79, 176, and 630 nm on a diamond substrate. The data agree with theoretical predictions accounting for the coupled effects of phonon scattering on film boundaries and defects related to grain boundaries. Using the data and the phonon transport model, we extract the normal, or cross-plane thermal conductivity of the polysilicon (11.3 ± 3.5, 14.2 ± 3.5, and 25.6 ± 5.8 W m−1 K−1 for the 79, 176, and 630 nm films, respectively), as well as the thermal boundary resistance between polysilicon and diamond (6.5–8 m2 K GW−1) at room temperature. The nonuniformity in the extracted thermal conductivities is due to spatially varying distributions of imperfections in the direction normal to the film associated with nucleation and coalescence of grains and their subsequent columnar growth.

References

References
1.
Nguyen
,
B.-Y.
,
Celler
,
G.
, and
Mazuré
,
C.
,
2009
, “
A Review of SOI Technology and Its Applications
,”
J. Integr. Circuit Syst.
,
4
(
2
), pp.
51
54
.
2.
Marconnet
,
A. M.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2013
, “
From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator Technology
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061601
.10.1115/1.4023577
3.
Hopkins
,
P. E.
,
Reinke
,
C. M.
,
Su
,
M. F.
,
Olsson
,
R. H.
,
Shaner
,
E. A.
,
Leseman
,
Z. C.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
El-Kady
,
I.
,
2010
, “
Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
,”
Nano Lett.
,
11
(
1
), pp.
107
112
.10.1021/nl102918q
4.
McConnell
,
A. D.
, and
Goodson
,
K. E.
,
2005
, “
Thermal Conduction in Silicon Micro- and Nanostructures
,”
Ann. Rev. Heat Transfer
,
14
, pp.
129
168
.10.1615/AnnualRevHeatTransfer.v14.120
5.
Cho
,
J.
,
Li
,
Z.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2014
, “
Near-Junction Thermal Management: Thermal Conduction in Gallium Nitride Composite Substrates
,”
Ann. Rev. Heat Transfer
(in press).
6.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
,
1997
, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.10.1063/1.119402
7.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.10.1063/1.123994
8.
Liu
,
W.
, and
Asheghi
,
M.
,
2006
, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
75
83
.10.1115/1.2130403
9.
Hao
,
Z.
,
Zhichao
,
L.
,
Lilin
,
T.
,
Zhimin
,
T.
,
Litian
,
L.
, and
Zhijian
,
L.
,
2006
, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Films Using Improved Structure
,”
8th International Conference on Solid-State and Integrated Circuit Technology
(
ICSICT’06
), Shanghai, Oct. 23–26, pp.
2196
2198
.10.1109/ICSICT.2006.306679
10.
Aubain
,
M. S.
, and
Bandaru
,
P. R.
,
2011
, “
In-Plane Thermal Conductivity Determination Through Thermoreflectance Analysis and Measurements
,”
J. Appl. Phys.
,
110
(
8
), p.
084313
.10.1063/1.3647318
11.
Ferrando-Villalba
,
P.
,
Lopeandia
,
A. F.
,
Abad
,
L.
,
Llobet
,
J.
,
Molina-Ruiz
,
M.
,
Garcia
,
G.
,
Gerbolès
,
M.
,
Alvarez
,
F. X.
,
Goñi
,
A. R.
,
Muñoz-Pascual
,
F. J.
, and
Rodríguez-Viejo
,
J.
,
2014
, “
In-Plane Thermal Conductivity of Sub-20 nm Thick Suspended Mono-Crystalline Si Layers
,”
Nanotechnology
,
25
(
18
), p.
185402
.10.1088/0957-4484/25/18/185402
12.
Cuffe
,
J.
,
Eliason
,
J. K.
,
Maznev
,
A. A.
,
Collins
,
K. C.
,
Johnson
,
J. A.
,
Shchepetov
,
A.
,
Prunnila
,
M.
,
Ahopelto
,
J.
,
Torres
,
C. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2014
, “
Reconstructing Phonon Mean Free Path Contributions to Thermal Conductivity Using Nanoscale Membranes
,” preprint arXiv:1408.6747.
13.
Chávez-Ángel
,
E.
,
Reparaz
,
J. S.
,
Gomis-Bresco
,
J.
,
Wagner
,
M. R.
,
Cuffe
,
J.
,
Graczykowski
,
B.
,
Shchepetov
,
A.
,
Jiang
,
H.
,
Prunnila
,
M.
,
Ahopelto
,
J.
,
Alzina
,
F.
, and
Torres
,
C. S.
,
2014
, “
Reduction of the Thermal Conductivity in Free-Standing Silicon Nano-Membranes Investigated by Non-Invasive Raman Thermometry
,”
APL Mater.
,
2
(
1
), p.
012113
.10.1063/1.4861796
14.
McConnell
,
A. D.
,
Uma
,
S.
, and
Goodson
,
K. E.
,
2001
, “
Thermal Conductivity of Doped Polysilicon Layers
,”
J. Microelectromech. Syst.
,
10
(
3
), pp.
360
369
.10.1109/84.946782
15.
Uma
,
S.
,
McConnell
,
A. D.
,
Asheghi
,
M.
,
Kurabayashi
,
K.
, and
Goodson
,
K. E.
,
2001
, “
Temperature Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers
,”
Int. J. Thermophys.
,
22
(
2
), pp.
605
616
.10.1023/A:1010791302387
16.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
,
2002
, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
,
91
(
8
), pp.
5079
5088
.10.1063/1.1458057
17.
Huxtable
,
S. T.
,
Cahill
,
D. G.
, and
Phinney
,
L. M.
,
2004
, “
Thermal Contact Conductance of Adhered Microcantilevers
,”
J. Appl. Phys.
,
95
(
4
), pp.
2102
2108
.10.1063/1.1639146
18.
Mandurah
,
M. M.
,
Saraswat
,
K. C.
,
Helms
,
C. R.
, and
Kamins
,
T. I.
,
1980
, “
Dopant Segregation in Polycrystalline Silicon
,”
J. Appl. Phys.
,
51
(
11
), pp.
5755
5763
.10.1063/1.327582
19.
ASTM
,
2004
, “
Standard e112: Standard Test Methods for Determining Average Grain Size
,” ASTM International, West Conshohocken, PA.
20.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Improved Apparatus for Picosecond Pump-and-Probe Optical Measurements
,”
Rev. Sci. Instrum.
,
67
(
8
), pp.
2720
2726
.10.1063/1.1147100
21.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.10.1063/1.1819431
22.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.10.1103/PhysRevB.73.144301
23.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114902
.10.1063/1.3006335
24.
Koh
,
Y. K.
,
Singer
,
S. L.
,
Kim
,
W.
,
Zide
,
J. M. O.
,
Lu
,
H.
,
Cahill
,
D. G.
,
Majumdar
,
A.
, and
Gossard
,
A. C.
,
2009
, “
Comparison of the 3ω Method and Time-Domain Thermoreflectance for Measurements of the Cross-Plane Thermal Conductivity of Epitaxial Semiconductors
,”
J. Appl. Phys.
,
105
(
5
), p.
054303
.10.1063/1.3078808
25.
Panzer
,
M. A.
,
2010
, “
Thermal Characterization and Modeling of Nanostructured Materials
,” Ph.D. thesis, Stanford University, Stanford, CA.
26.
Cho
,
J.
,
Li
,
Y.
,
Hoke
,
W.
,
Altman
,
D. H.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2014
, “
Phonon Scattering in Strained Transition Layers for GaN Heteroepitaxy
,”
Phys. Rev. B
,
89
(
11
), p.
115301
.10.1103/PhysRevB.89.115301
27.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport. II. 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
28.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
29.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
(
2
), pp.
279
421
.10.1063/1.3253100
30.
Giauque
,
W. F.
, and
Meads
,
P. F.
,
1941
, “
The Heat Capacities and Entropies of Aluminum and Copper From 15 to 300 K
,”
J. Am. Chem. Soc.
,
63
(
7
), pp.
1897
1901
.10.1021/ja01852a027
31.
Flubacher
,
P.
,
Leadbetter
,
A. J.
, and
Morrison
,
J. A.
,
1959
, “
Heat Capacity of Pure Silicon and Germanium and Properties of Their Vibrational Frequency Spectra
,”
Philos. Mag.
,
4
(
39
), pp.
273
294
.10.1080/14786435908233340
32.
Graebner
,
J. E.
,
1996
, “
Measurements of Specific Heat and Mass Density in CVD Diamond
,”
Diam. Relat. Mater.
,
5
(
11
), pp.
1366
1370
.10.1016/0925-9635(96)00550-X
33.
Graebner
,
J. E.
,
Jin
,
S.
,
Kammlott
,
G. W.
,
Herb
,
J. A.
, and
Gardinier
,
C. F.
,
1992
, “
Large Anisotropic Thermal Conductivity in Synthetic Diamond Films
,”
Nature
,
359
, pp.
401
403
.10.1038/359401a0
34.
Wort
,
C. J. H.
,
Sweeney
,
C. G.
,
Cooper
,
M. A.
,
Scarsbrook
,
G. A.
, and
Sussmann
,
R. S.
,
1994
, “
Thermal Properties of Bulk Polycrystalline CVD Diamond
,”
Diam. Relat. Mater.
,
3
(
9
), pp.
1158
1167
.10.1016/0925-9635(94)90162-7
35.
Lee
,
S.-M.
, and
Cahill
,
D. G.
,
1997
, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
(
6
), pp.
2590
2595
.10.1063/1.363923
36.
Zeng
,
T.
, and
Chen
,
G.
,
2001
, “
Phonon Heat Conduction in Thin Films: Impacts of Thermal Boundary Resistance and Internal Heat Generation
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
340
347
.10.1115/1.1351169
37.
Cahill
,
D. G.
,
Goodson
,
K. E.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
223
241
.10.1115/1.1454111
38.
Sood
,
A.
,
Cho
,
J.
,
Hobart
,
K. D.
,
Feygelson
,
T.
,
Pate
,
B.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2014
, “
Anisotropic and Nonhomogeneous Thermal Conduction in 1 μm Thick CVD Diamond
,”
2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
, Orlando, FL, pp.
1192
1198
.
39.
Hopkins
,
P. E.
,
Phinney
,
L. M.
,
Serrano
,
J. R.
, and
Beechem
,
T. E.
,
2010
, “
Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces
,”
Phys. Rev. B
,
82
(
8
), p.
085307
.10.1103/PhysRevB.82.085307
40.
Gorham
,
C. S.
,
Hattar
,
K.
,
Cheaito
,
R.
,
Duda
,
J. C.
,
Gaskins
,
J. T.
,
Beechem
,
T. E.
,
Ihlefeld
,
J. F.
,
Biedermann
,
L. B.
,
Piekos
,
E. S.
,
Medlin
,
D. L.
, and
Hopkins
,
P. E.
,
2014
, “
Ion Irradiation of The Native Oxide/Silicon Surface Increases the Thermal Boundary Conductance Across Aluminum/Silicon Interfaces
,”
Phys. Rev. B
,
90
(
2
), p.
024301
.10.1103/PhysRevB.90.024301
41.
Hopkins
,
P. E.
,
Duda
,
J. C.
,
Petz
,
C. W.
, and
Floro
,
J. A.
,
2011
, “
Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces
,”
Phys. Rev. B
,
84
(
3
), p.
035438
.10.1103/PhysRevB.84.035438
42.
Duda
,
J. C.
, and
Hopkins
,
P. E.
,
2012
, “
Systematically Controlling Kapitza Conductance Via Chemical Etching
,”
Appl. Phys. Lett.
,
100
(
11
), p.
111602
.10.1063/1.3695058
43.
Wilson
,
R. B.
, and
Cahill
,
D. G.
,
2014
, “
Anisotropic Failure of Fourier Theory in Time-Domain Thermoreflectance Experiments
,”
Nat. Commun.
,
5
, p.
5075
.10.1038/ncomms6075
44.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.10.1103/PhysRevLett.107.095901
45.
Cho
,
J.
,
Bozorg-Grayeli
,
E.
,
Altman
,
D. H.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2012
, “
Low Thermal Resistances at GaN–SiC Interfaces for HEMT Technology
,”
IEEE Electron Device Lett.
,
33
(
3
), pp.
378
380
.10.1109/LED.2011.2181481
46.
Goodson
,
K. E.
,
Kading
,
O. W.
,
Rosler
,
M.
, and
Zachai
,
R.
,
1995
, “
Experimental Investigation of Thermal Conduction Normal to Diamond-Silicon Boundaries
,”
J. Appl. Phys.
,
77
(
4
), pp.
1385
1392
.10.1063/1.358950
47.
Touzelbaev
,
M. N.
, and
Goodson
,
K. E.
,
1997
, “
Impact of Nucleation Density on Thermal Resistance near Diamond-Substrate Boundaries
,”
J. Thermophys. Heat Transfer
,
11
(
4
), pp.
506
512
.10.2514/2.6291
48.
Goodson
,
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
279
286
.10.1115/1.2825842
49.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
50.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
51.
Bellis
,
L. D.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2000
, “
Variations of Acoustic and Diffuse Mismatch Models in Predicting Thermal-Boundary Resistance
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
144
150
.10.2514/2.6525
52.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
(
7
), pp.
7
16
.10.1115/1.2910673
53.
Chen
,
G.
, and
Tien
,
C. L.
,
1993
, “
Thermal Conductivities of Quantum Well Structures
,”
J. Thermophys. Heat Transfer
,
7
(
2
), pp.
311
318
.10.2514/3.421
54.
Cahill
,
D. G.
,
1997
, “
Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces
,”
Microscale Thermophys. Eng.
,
1
(
2
), pp.
85
109
.10.1080/108939597200296
55.
Seager
,
C. H.
,
1985
, “
Grain Boundaries in Polycrystalline Silicon
,”
Ann. Rev. Mater. Sci.
,
15
(
1
), pp.
271
302
.10.1146/annurev.ms.15.080185.001415
56.
Ju
,
S.
,
Liang
,
X.
, and
Xu
,
X.
,
2011
, “
Out-of-Plane Thermal Conductivity of Polycrystalline Silicon Nanofilm by Molecular Dynamics Simulation
,”
J. Appl. Phys.
,
110
(
5
), p.
054318
.10.1063/1.3633232
You do not currently have access to this content.