Pin-fins are considered as one of the best elements for heat transfer enhancement in heat exchangers. In this study, the topology of pin-fins (length, diameter, and shape) is optimized based on the entropy generation minimization (EGM) theory coupled with the constructal law (CL). Such pin-fins are employed in a heat exchanger in a sensible thermal energy storage (TES) system so as to enhance the rate of heat transfer. First, the EGM method is used to obtain the optimal length of pin-fins, and then the CL is applied to get the optimal diameter and shape of pin-fins. Reliable computational fluid dynamics (CFD) simulations of various constructal pin-fin models are performed, and detailed flow and heat transfer characteristics are presented. The results show that by using the proposed system with optimized pin-fin heat exchanger the stored thermal energy can be increased by 10.2%.

References

References
1.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
2.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
3.
Saffaripour
,
P. M.
, and
Culham
,
R.
,
2010
, “
Measurement of Entropy Generation in Microscale Thermal-Fluid Systems
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121401
.10.1115/1.4002026
4.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122401
.10.1115/1.4002395
5.
Mahian
,
O.
,
Mahmud
,
S.
, and
Heris
,
S. Z.
,
2012
, “
Effect of Uncertainties in Physical Properties on Entropy Generation Between Two Rotating Cylinders With Nanofluids
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101704
.10.1115/1.4006662
6.
Arikoglu
,
A.
,
Komurgoz
,
G.
,
Ozkol
,
I.
, and
Gunes
,
A. Y.
,
2010
, “
Combined Effects of Temperature and Velocity Jump on the Heat Transfer, Fluid Flow, and Entropy Generation Over a Single Rotating Disk
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111703
.10.1115/1.4002098
7.
Bright
,
T. J.
, and
Zhang
,
Z. M.
,
2010
, “
Entropy Generation in Thin Films Evaluated From Phonon Radiative Transport
,”
ASME J. Heat Transfer
,
132
(
10
), p.
101301
.10.1115/1.4001913
8.
Bi
,
Y.
,
Guo
,
T.
,
Zhang
,
L.
,
Chen
,
L.
, and
Sun
,
F.
,
2010
, “
Entropy Generation Minimization for Charging and Discharging Processes in a Gas-Hydrate Cool Storage System
,”
Appl. Energy
,
87
(
4
), pp.
1149
1157
.10.1016/j.apenergy.2009.07.020
9.
Ramakrishna
,
D.
,
Basak
,
T.
, and
Roy
,
S.
,
2013
, “
Analysis of Heatlines and Entropy Generation During Free Convection Within Trapezoidal Cavities
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
32
40
.10.1016/j.icheatmasstransfer.2013.04.004
10.
Cheng
,
X.
,
2013
, “
Entropy Resistance Minimization: An Alternative Method for Heat Exchanger Analyses
,”
Energy
,
58
, pp.
672
678
.10.1016/j.energy.2013.05.024
11.
Giangaspero
,
G.
, and
Sciubba
,
E.
,
2013
, “
Application of the Entropy Generation Minimization Method to a Solar Heat Exchanger: A Pseudo-Optimization Design Process Based on the Analysis of the Local Entropy Generation Maps
,”
Energy
,
58
, pp.
52
65
.10.1016/j.energy.2013.01.069
12.
Li
,
M.
, and
Lai
,
C. K.
,
2013
, “
Thermodynamic Optimization of Ground Heat Exchangers With Single U-Tube by Entropy Generation Minimization Method
,”
Energy Conversion and Management
,
65
, pp.
133
139
.10.1016/j.enconman.2012.07.013
13.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
New York
.
14.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
15.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law and the Evolution of Design in Nature
,”
Phys. Life Rev.
,
8
(
3
), pp.
209
240
.10.1016/j.plrev.2011.05.010
16.
Reis
,
A. H.
,
2006
, “
Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure
,”
ASME Appl. Mech. Rev.
,
59
(
5
), pp.
269
282
.10.1115/1.2204075
17.
Kephart
,
J.
, and
Jones
,
G. F.
,
2013
, “
Optimizing a Functionally Graded Metal–Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins
,”
ASME Heat Transfer Summer Conference
,
ASME
Paper No. HT2013-17384. 10.1115/HT2013-17384
18.
Miguel
,
A. F.
,
2008
, “
Constructal Design of Solar Energy-Based Systems for Buildings
,”
Energy Build.
,
40
(
6
), pp.
1020
1030
.10.1016/j.enbuild.2007.08.005
19.
Xia
,
L.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2011
, “
Constructal Design of Distributed Cooling on the Landscape
,”
Int. J. Energy Res.
,
35
(
9
), pp.
805
812
.10.1002/er.1743
20.
Ordonez
,
J. C.
,
Chen
,
S.
,
Vargas
,
J. V. C.
,
Dias
,
F. G.
,
Gardolinski
,
J. E. F. C.
, and
Vlassov
,
D.
,
2007
, “
Constructal Flow Structure for a Single SOFC
,”
Int. J. Energy Res.
,
31
(
14
), pp.
1337
1357
.10.1002/er.1307
21.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1458
1463
.10.1016/j.ijheatmasstransfer.2008.09.007
22.
Bello-Ochende
,
T.
,
Meyer
,
J. P.
, and
Bejan
,
A.
,
2010
, “
Constructal Multi-Scale Pin-Fins
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2773
2779
.10.1016/j.ijheatmasstransfer.2010.02.021
23.
Lorenzini
,
G.
,
Correa
,
R. L.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design of Complex Assembly of Fins
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081902
.10.1115/1.4003710
24.
Norouzi
,
E.
,
Mehrgoo
,
M.
, and
Amidpour
,
M.
,
2012
, “
Geometric and Thermodynamic Optimization of a Heat Recovery Steam Generator: A Constructal Design
,”
ASME J. Heat Transfer
,
134
(
11
), p.
111801
.10.1115/1.4007070
25.
Chen
,
L. G.
,
Feng
,
H. J.
,
Xie
,
Z. H.
, and
Sun
,
F. R.
,
2013
, “
Constructal Optimization for Disc-Point Heat Conduction at Micro and Nanoscales
,”
Int. J. Heat Mass Transfer
,
67
, pp.
704
711
.10.1016/j.ijheatmasstransfer.2013.08.051
26.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2013
,
Constructal Law and the Unifying Principle of Design
,
Springer
,
New York
.
27.
Fluent Documentation
, http://www.fluent.com
28.
Rao
,
Y.
,
Wan
,
C.
, and
Xu
,
Y.
,
2012
, “
An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6723
6733
.10.1016/j.ijheatmasstransfer.2012.06.081
29.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4099
4109
.10.1016/j.ijheatmasstransfer.2011.04.001
30.
Gumus
,
M.
,
2009
, “
Reducing Cold-Start Emission From Internal Combustion Engines by Means of Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
29
(
4
), pp.
652
660
.10.1016/j.applthermaleng.2008.03.044
31.
Jeng
,
T.-M.
, and
Tzeng
,
S. C.
,
2007
, “
Pressure Drop and Heat Transfer of Square Pin-Fin Arrays in In-Line and Staggered Arrangements
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2364
2375
.10.1016/j.ijheatmasstransfer.2006.10.028
You do not currently have access to this content.