In the present paper, the genetic programing (GP) is integrated with the genetic algorithm (GA) for deriving heat transfer correlations. In the process of developing heat transfer correlations with the approach (GP with GA (GPA)), the GP is first employed to obtain some potential optimal forms. After that, the forms are further optimized with the global GA to reach minimum errors between the predicted values and experimental values. With the proposed approach, three typical different heat transfer problems are applied to the data reduction processes from published experimental data, which are heat transfer in a shell-and-tube heat exchanger (STHE) with continuous helical baffles, a single row heat exchanger with helically finned tubes and a finned oval-tube heat exchanger with double rows of tubes, respectively. The results indicate that the GPA approach could improve the performance of heat transfer correlations obtained with the GP. Compared with the power-law-based correlations, the heat transfer correlations obtained with the approach have higher predicted accuracies and more excellent robustness.

References

References
1.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
University of Michigan Press
, Ann Arbor, MI.
2.
Koza
,
J. R.
,
1992
,
Genetic Programming: On the Programming of Computers by Means of Natural Selection
,
MIT Press
, MA.
3.
Lee
,
D. G.
,
Kim
,
H. G.
,
Baek
,
W. P.
, and
Soon
,
H. C.
,
1997
, “
Critical Heat Flux Prediction Using Genetic Programming for Water Flow in Vertical Round Tubes
,”
Int. Commun. Heat Mass Transfer
,
24
(
7
), pp.
919
929
.10.1016/S0735-1933(97)00078-X
4.
Cai
,
W.
,
Pacheco-Vega
,
A.
,
Sen
,
M.
, and
Yang
,
K. T.
,
2006
, “
Heat Transfer Correlations by Symbolic Regression
,”
Int. J. Heat Mass Transfer
,
49
(
23
), pp.
4352
4359
.10.1016/j.ijheatmasstransfer.2006.04.029
5.
Zdaniuk
,
G. J.
,
Luck
,
R.
, and
Chamra
,
L. M.
,
2008
, “
Linear Correlation of Heat Transfer and Friction in Helically-Finned Tubes Using Five Simple Groups of Parameters
,”
Int. J. Heat Mass Transfer
,
51
(
13
), pp.
3548
3555
.10.1016/j.ijheatmasstransfer.2007.10.022
6.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
52
(
9
), pp.
2169
2188
.10.1016/j.ijheatmasstransfer.2008.11.015
7.
Pacheco-Vega
,
A.
,
Sen
,
M.
, and
Yang
,
K. T.
,
2003
, “
Simultaneous Determination of In-and Over-Tube Heat Transfer Correlations in Heat Exchangers by Global Regression
,”
Int. J. Heat Mass Transfer
,
46
(
6
), pp.
1029
1040
.10.1016/S0017-9310(02)00365-4
8.
Momayez
,
L.
,
Dupont
,
P.
,
Delacourt
,
G.
,
Lottin
,
O.
, and
Peerhossaini
,
H.
,
2009
, “
Genetic Algorithm Based Correlations for Heat Transfer Calculation on Concave Surfaces
,”
Appl. Therm. Eng.
,
29
(
17
), pp.
3476
3481
.10.1016/j.applthermaleng.2009.05.025
9.
Porto
,
M. P.
,
Pedro
,
H. T.
,
Machado
,
L.
,
Koury
,
R. N.
,
Lima
,
C. U.
, and
Coimbra
,
C. F.
,
2014
, “
Genetic Optimization of Heat Transfer Correlations for Evaporator Tube Flows
,”
Int. J. Heat Mass Transfer
,
70
, pp.
330
339
.10.1016/j.ijheatmasstransfer.2013.11.011
10.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
Dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.10.1115/1.4027195
11.
Zeng
,
M.
,
Du
,
L. X.
,
Liao
,
D.
,
Chu
,
W. X.
,
Wang
,
Q. W.
,
Luo
,
Y.
, and
Sun
,
Y.
,
2012
, “
Investigation on Pressure Drop and Heat Transfer Performances of Plate-Fin Iron Air Preheater Unit With Experimental and Genetic Algorithm Methods
,”
Appl. Energy
,
92
, pp.
725
732
.10.1016/j.apenergy.2011.08.008
12.
Wang
,
Q. W.
,
Xie
,
G. N.
,
Peng
,
B. T.
, and
Zeng
,
M.
,
2007
, “
Experimental Study and Genetic-Algorithm-Based Correlation on Shell-Side Heat Transfer and Flow Performance of Three Different Types of Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1277
1285
.10.1115/1.2739611
13.
Wang
,
Q. W.
,
Zhang
,
D. J.
, and
Xie
,
G. N.
,
2009
, “
Experimental Study and Genetic-Algorithm-Based Correlation on Pressure Drop and Heat Transfer Performances of a Cross-Corrugated Primary Surface Heat Exchanger
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061802
.10.1115/1.3090716
14.
Fernandez-Ramirez
,
C.
,
De Guerra
,
E. M.
,
Udias
,
A.
, and
Udias
,
J. M.
,
2008
, “
Properties of Nucleon Resonances by Means of a Genetic Algorithm
,”
Phys. Rev. C
,
77
(
6
), p.
065212
.10.1103/PhysRevC.77.065212
15.
Silva
,
S.
, and
Costa
,
E.
,
2009
, “
Dynamic Limits for Bloat Control in Genetic Programming and a Review of Past and Current Bloat Theories
,”
Genet. Program. Evol. Mach.
,
10
(
2
), pp.
141
179
.10.1007/s10710-008-9075-9
16.
Xie
,
G. N.
,
Sunden
,
B.
, and
Wang
,
Q. W.
,
2008
, “
Optimization of Compact Heat Exchangers by a Genetic Algorithm
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
895
906
.10.1016/j.applthermaleng.2007.07.008
17.
Cong
,
T. L.
,
Chen
,
R. H.
,
Su
,
G. H.
,
Qiu
,
S. Z.
, and
Tian
,
W. X.
,
2011
, “
Analysis of Chf in Saturated Forced Convective Boiling on a Heated Surface With Impinging Jets Using Artificial Neural Network and Genetic Algorithm
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3945
3951
.10.1016/j.nucengdes.2011.07.029
18.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
, Boston, MA.
19.
Michalewicz
,
Z.
,
1999
,
Genetic Algorithms + Data Structures = Evolution Programs
,
Springer-Verlag
,
New York.
20.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
21.
Khartabil
,
H. F.
, and
Christensen
,
R. N.
,
1992
, “
An Improved Scheme for Determining Heat Transfer Correlations From Heat Exchanger Regression Models With Three Unknowns
,”
Exp. Therm. Fluid Sci.
,
5
(
6
), pp.
808
819
.10.1016/0894-1777(92)90125-O
22.
Peng
,
B. T.
,
Wang
,
Q. W.
,
Zhang
,
C.
,
Xie
,
G. N.
,
Luo
,
L. Q.
,
Chen
,
Q. Y.
, and
Zeng
,
M.
,
2007
, “
An Experimental Study of Shell-and-Tube Heat Exchangers With Continuous Helical Baffles
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1425
1431
.10.1115/1.2754878
23.
Wang
,
Q. W.
,
Chen
,
G. D.
,
Chen
,
Q. Y.
, and
Zeng
,
M.
,
2010
, “
Review of Improvements on Shell-and-Tube Heat Exchangers With Helical Baffles
,”
Heat Transfer Eng.
,
31
(
10
), pp.
836
853
.10.1080/01457630903547602
24.
Wang
,
Q. W.
,
Zeng
,
M.
,
Ma
,
T.
,
Du
,
X. P.
, and
Yang
,
J. F.
,
2014
, “
Recent Development and Application of Several High-Efficiency Surface Heat Exchangers for Energy Conversion and Utilization
,”
Appl. Energy
,
135
(
15
), pp.
748
777
.10.1016/j.apenergy.2014.05.004
25.
Huisseune
,
H.
,
T'Joen
,
C.
,
Brodeoux
,
P.
,
Debaets
,
S.
, and
De Paepe
,
M.
,
2010
, “
Thermal Hydraulic Study of a Single Row Heat Exchanger With Helically Finned Tubes
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061801
.10.1115/1.4000706
26.
T'Joen
,
C.
,
Steeman
,
H. J.
,
Willockx
,
A.
, and
De Paepe
,
M.
,
2006
, “
Determination of Heat Transfer and Friction Characteristics of an Adapted Inclined Louvered Fin
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
319
327
.10.1016/j.expthermflusci.2005.07.005
27.
T'Joen
,
C.
,
Willockx
,
A.
,
Steeman
,
H. J.
, and
De Paepe
,
M.
,
2007
, “
Performance Prediction of Compact Fin-and-Tube Heat Exchangers in Maldistributed Airflow
,”
Heat Transfer Eng.
,
28
(
12
), pp.
986
996
.10.1080/01457630701483570
28.
Du
,
X. P.
,
Zeng
,
M.
,
Dong
,
Z. Y.
, and
Wang
,
Q. W.
,
2014
, “
Experimental Study of the Effect of Air Inlet Angle on the Air-Side Performance for Cross-Flow Finned Oval-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
146
155
.10.1016/j.expthermflusci.2013.09.005
29.
Du
,
X. P.
,
Zeng
,
M.
,
Wang
,
Q. W.
, and
Dong
,
Z. Y.
,
2014
, “
Experimental Investigation of Heat Transfer and Resistance Characteristics of a Finned Oval-Tube Heat Exchanger With Different Air Inlet Angles
,”
Heat Transfer Eng.
,
35
(
6–8
), pp.
703
710
.10.1080/01457632.2013.837780
30.
Tang
,
L. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2009
, “
Experimental and Numerical Investigation on Air-Side Performance of Fin-and-Tube Heat Exchangers With Various Fin Patterns
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
818
827
.10.1016/j.expthermflusci.2009.02.008
31.
Pacheco-Vega
,
A.
,
Dı́az
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
Mcclain
,
R. L.
,
2001
, “
Heat Rate Predictions in Humid Air–Water Heat Exchangers Using Correlations and Neural Networks
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
348
354
.10.1115/1.1351167
You do not currently have access to this content.