This work relies on constructal design to perform the geometric optimization of the V-shaped pathways of highly conductive materials (inserts) that remove a constant heat generation rate from a body and deliver it to isothermal heat sinks. It is shown numerically that the global thermal resistance of the V-shaped pathway can be minimized by geometric optimization subject to total volume and V-shaped pathways material constraints. Constructal design and genetic algorithm (GA) optimization showed the emergence of an optimal architecture that minimizes the global thermal resistance: an optimal external shape for the assembly of pathways and optimal geometry features for the V-shaped pathway. Parametric study was performed to show the behavior of the minimized global thermal resistance as function of the volume fraction of the V-shaped pathways. First achieved results for ϕ = 0.3 indicated that when freedom is given to the geometry, the thermal performance is improved. Afterward, the employment of GA with constructal design allowed the achievement of the optimal shapes of V-shaped pathways for different volume fractions (0.2 ≤ ϕ ≤ 0.4). It was not realized the occurrence of one universal optimal shape for the several values of ϕ investigated, i.e., the optimal design was dependent on the degrees of freedom and the parameter ϕ and it is reached according to constructal principle of optimal distribution of imperfections.

References

References
1.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law and the Evolution of Design in Nature
,”
Phys. Life Rev.
,
8
(3), pp.
209
240
.10.1016/j.plrev.2011.05.010
2.
Bejan
,
A.
, and
Zane
,
J. P.
,
2012
,
Design in Nature, Doubleday
,
New York
.
3.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.10.1002/9780470432709
4.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.10.3390/e3050293
5.
Bejan
,
A.
,
Lorente
,
S.
, and
Lee
,
J.
,
2008
, “
Unifying Constructal Theory of Tree Roots, Canopies and Forests
,”
J. Theor. Biol.
,
254
(
3
), pp.
529
540
.10.1016/j.jtbi.2008.06.026
6.
Reis
,
A. H.
, and
Bejan
,
A.
,
2006
, “
Constructal Theory of Global Circulation and Climate
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1857
1875
.10.1016/j.ijheatmasstransfer.2005.10.037
7.
Miguel
,
A. F.
,
2013
, “
The Emergence of Design in Pedestrian Dynamics: Locomotion, Self-Organization, Walking Paths and Constructal Law
,”
Phys. Life Rev.
,
10
(
2
), pp.
168
190
.10.1016/j.plrev.2013.03.007
8.
Bejan
,
A.
, and
Merkx
,
G. W.
,
2007
,
Constructal Theory of Social Dynamics
,
Springer
,
New York
.
9.
Beyene
,
A.
, and
Peffley
,
J.
,
2009
, “
Constructal Theory, Adaptive Motion, and Their Theoretical Application to Low-Speed Turbine Design
,”
J. Energy Eng
,
135
(
4
), pp.
112
118
.10.1061/(ASCE)0733-9402(2009)135:4(112)
10.
Kim
,
Y.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2011
, “
Steam Generator Structure: Continuous Model and Constructal Design
,”
Int. J. Energy Res.
,
35
(
4
), pp.
336
345
.10.1002/er.1694
11.
Chen
,
L.
,
2012
, “
Progress in Study on Constructal Theory and Its Applications
,”
Sci. China Technol. Sci.
,
55
(
3
), pp.
802
820
.10.1007/s11431-011-4701-9
12.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2013
,
Constructal Law and the Unifying Principle of Design
,
Springer
,
New York
.10.1007/978-1-4614-5049-8
13.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of Non-Uniform X-Shaped Conductive Pathways for Cooling
,”
Int. J. Thermal Sci.
,
71
, pp.
140
147
.10.1016/j.ijthermalsci.2013.04.021
14.
Kraus
,
A. D.
,
1999
, “
Developments in the Analysis of Finned Arrays
,”
Int. J. Transp. Phenom.
,
1
(
3
), pp.
141
164
.
15.
Aziz
,
A.
,
1992
, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment
,”
ASME Appl. Mech. Rev.
,
45
(
5
), pp.
155
173
.10.1115/1.3119754
16.
Bonjour
,
J.
,
Rocha
,
L. A. O.
,
Bejan
,
A.
, and
Meunier
,
F.
,
2004
, “
Dendritic Fins Optimization for a Coaxial Two-Stream Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
47
(
1
), pp.
111
124
.10.1016/S0017-9310(03)00406-X
17.
Biserni
,
C.
,
Rocha
,
L. A. O.
, and
Bejan
,
A.
,
2004
, “
Inverted Fins: Geometric Optimization of the Intrusion Into a Conducting Wall
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2577
2586
.10.1016/j.ijheatmasstransfer.2003.12.018
18.
Xie
,
Z.
,
Chen
,
L.
, and
Sun
,
F.
,
2010
, “
Geometry Optimization of T-Shaped Cavities According to Constructal Theory
,”
Math. Comput. Modell.
,
52
(
9–10
), pp.
1538
1546
.10.1016/j.mcm.2010.06.017
19.
Rocha
,
L. A. O.
,
Lorenzini
,
E.
, and
Biserni
,
C.
,
2005
, “
Geometric Optimization of Shapes on the Basis of Bejan's Constructal Theory
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1281
1288
.10.1016/j.icheatmasstransfer.2005.07.010
20.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Geometric Optimization of T–Y-Shaped Cavity According to Constructal Design
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4683
4688
.10.1016/j.ijheatmasstransfer.2009.06.020
21.
Lorenzini
,
G.
,
Garcia
,
F. L.
,
dos Santos
,
E. D.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2012
, “
Constructal Design Applied to the Optimization of Complex Geometries: T–Y-Shaped Cavities With Two Additional Lateral Intrusions Cooled By Convection
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1505
1512
.10.1016/j.ijheatmasstransfer.2011.10.057
22.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
,
Campo
,
A.
, and
Nourazar
,
S. S.
,
2013
, “
Valuable Reconsideration in the Constructal Design of Cavities
,”
Energy Convers. Manage.
,
66
, pp.
33
40
.10.1016/j.enconman.2012.09.031
23.
Lorenzini
,
G.
,
Biserni
,
C.
,
dos Santos
,
E. D.
,
Isoldi
,
L. A.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Isothermal X-Shaped Cavities
,”
Therm. Sci.
,
18
(
2
), pp.
349
356
.10.2298/TSCI120804005L
24.
Lorenzini
,
G.
,
Rocha
,
L. A. O.
,
Biserni
,
C.
,
dos Santos
,
E. D.
, and
Isoldi
,
L. A.
,
2012
, “
Constructal Design of Cavities Inserted Into a Cylindrical Solid Body
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071301
.10.1115/1.4006103
25.
Pouzesh
,
A.
,
Mohammad
,
R. H.
, and
Poozesh
,
S.
, “
Investigations on the Internal Shape of Constructal Cavities Intruding a Heat Generating Body
,”
Therm. Sci.
(published online).10.2298/tsci120427164p
26.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2101
2115
.10.1016/S0017-9310(99)00283-5
27.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2006
, “
Constructal Design of Y-Shaped Assembly of Fins
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4552
4557
.10.1016/j.ijheatmasstransfer.2006.05.019
28.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1458
1463
.10.1016/j.ijheatmasstransfer.2008.09.007
29.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
, and
Hosseini
,
R.
,
2012
, “
Radiation Effect on Constructal Design Analysis of a T–Y-Shaped Assembly of Fins
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
677
692
.10.1299/jtst.7.677
30.
Hui
,
X. Z.
,
Gen
,
C. L.
, and
Rui
,
S. F.
,
2010
, “
Constructal Optimization of Twice Y-Shaped Assemblies of Fins by Taking Maximum Thermal Resistance Minimization as Objective
,”
Sci. China Technol. Sci.
,
53
(
10
), pp.
2756
2764
.10.1007/s11431-010-4037-x
31.
Lorenzini
,
G.
,
Corrêa
,
R. L.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design of Complex Assembly of Fins
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081902
.10.1115/1.4003710
32.
Bhanja
,
D.
, and
Kundu
,
B.
,
2011
, “
Thermal Analysis of a Constructal T-Shaped Porous Fin With Radiation Effects
,”
Int. J. Refrig.
,
34
(
6
), pp.
1483
1496
.10.1016/j.ijrefrig.2011.04.003
33.
Bhanja
,
D.
, and
Kundu
,
B.
,
2012
, “
Radiation Effect on Optimum Design Analysis of a Constructal T-Shaped Fin With Variable Thermal Conductivity
,”
Heat Mass Transfer
,
48
(
1
), pp.
109
122
.10.1007/s00231-011-0845-1
34.
Kundu
,
B.
, and
Bhanja
,
D.
,
2010
, “
Performance and Optimization Analysis of a Construtal T-Shaped Fin Subject to Variable Thermal Conductivity and Convective Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
254
267
.10.1016/j.ijheatmasstransfer.2009.09.034
35.
Bello-Ochende
,
T.
,
Meyer
,
J. P.
, and
Bejan
,
A.
,
2010
, “
Constructal Multi-Scale Pin–Fins
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2773
2779
.10.1016/j.ijheatmasstransfer.2010.02.021
36.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
,
Nourazar
,
S. S.
, and
Manesh
,
A. H.
,
2013
, “
Optimal Architecture of Heat Generating Pieces in a Fin
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
1143
1149
.10.1007/s12206-013-0217-5
37.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
, and
Nourazar
,
S. S.
,
2012
, “
Constructal Design of Multiple Heat Sources in a Square-Shaped Fin
,”
Proc. Inst. Mech. Eng., Part E
,
226
(
4
), pp.
324
336
.10.1177/0954408912447720
38.
Ghodoossi
,
L.
, and
Eǧrican
,
N.
,
2004
, “
Conductive Cooling of Triangular Shaped Electronics Using Constructal Theory
,”
Energy Convers. Manage.
,
45
(
6
), pp.
811
828
.10.1016/S0196-8904(03)00190-0
39.
Hajmohammadi
,
M. R.
,
Alizadeh Abianeh
,
V.
,
Moezzinajafabadi
,
M.
, and
Daneshi
,
M.
,
2013
, “
Fork-Shaped Highly Conductive Pathways for Maximum Cooling in a Heat Generating Piece
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
228
235
.10.1016/j.applthermaleng.2013.08.001
40.
Hajmohammadi
,
M. R.
, and
Shariatzadeh
,
O. J.
,
2014
, “
Phi and Psi Shaped Conductive Routes for Improved Cooling in a Heat Generating Piece
,”
Int. J. Therm. Sci.
,
77
, pp.
66
74
.10.1016/j.ijthermalsci.2013.10.015
41.
Hajmohammadi
,
M. R.
,
Campo
,
A.
,
Nourazar
,
S. S.
, and
Masood Ostad
,
A.
,
2013
, “
Improvement of Forced Convection Cooling Due to the Attachment of Heat Sources to a Conducting Thick Plate
,”
ASME J. Heat Transfer
,
135
(
12
), p.
124504
.10.1115/1.4024897
42.
Hajmohammadi
,
M. R.
,
Moulod
,
M.
,
Shariatzadeh
,
O. J.
, and
Campo
,
A.
,
2014
, “
Effects of a Thick Plate on the Excess Temperature of Iso-Heat Flux Heat Sources Cooled by Laminar Forced Convection Flow: Conjugate Analysis
,”
Numer. Heat Transfer, Part A
,
66
(
2
), pp.
205
216
.10.1080/10407782.2013.873244
43.
Hajmohammadi
,
M. R.
,
Salimpour
,
M. R.
,
Saber
,
M.
, and
Campo
,
A.
,
2013
, “
Detailed Analysis for the Cooling Performance Enhancement of a Heat Source Under a Thick Plate
,”
Energy Convers. Manage.
,
76
, pp.
691
700
.10.1016/j.enconman.2013.08.016
44.
Hajmohammadi
,
M.
,
Moulod
,
M.
,
Joneydi
,
S.
, and
Nourazar
,
S.
,
2013
, “
New Methods to Cope With Temperature Elevations in Heated Segments of Flat Plates Cooled by Boundary Layer Flow
,”
Therm. Sci.
(published online).10.2298/TSCI130128159H
45.
Hajmohammadi
,
M. R.
, and
Nourazar
,
S. S.
,
2014
, “
On the Insertion of a Thin Gas Layer in Micro Cylindrical Couette Flows Involving Power-Law Liquids
,”
Int. J. Heat Mass Transfer
,
75
, pp.
97
108
.10.1016/j.ijheatmasstransfer.2014.03.065
46.
Hajmohammadi
,
M. R.
,
Rahmani
,
M.
,
Campo
,
A.
, and
Joneydi Shariatzadeh
,
O.
,
2014
, “
Optimal Design of Unequal Heat Flux Elements for Optimized Heat Transfer Inside a Rectangular Duct
,”
Energy
,
68
, pp.
609
616
.10.1016/j.energy.2014.02.011
47.
Da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Plate With Laminar Forced Convection
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2139
2148
.10.1016/j.ijheatmasstransfer.2003.12.009
48.
Da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Wall With Natural Convection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
203
214
.10.1016/j.ijheatmasstransfer.2003.07.007
49.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.10.1115/1.4027195
50.
Lorenzini
,
G.
,
Biserni
,
C.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design Applied to the Geometric Optimization of Y-Shaped Cavities Embedded in a Conducting Medium
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041008
.10.1115/1.4005296
51.
Cheng
,
C.-H.
, and
Chen
,
Y.-F.
,
2014
, “
Topology Optimization of Heat Conduction Paths by a Non-Constrained Volume-of-Solid Function Method
,”
Int. J. Therm. Sci.
,
78
, pp.
16
25
.10.1016/j.ijthermalsci.2013.11.011
52.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.10.1016/j.ijheatmasstransfer.2008.12.013
53.
matlab
,
2000
,
User's Guide, Version 6.0.088, Release 12
,
The Mathworks, Inc.
,
Natick, MA
.
54.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
55.
Goldberg
,
D. E.
,
1989
,
Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Boston, MA
.
56.
Haupt
,
R. L.
, and
Haupt
,
S. E.
,
1989
,
Practical Genetic Algorithms
,
Wiley
,
Hoboken, NJ
.
57.
Renner
,
G.
, and
Ekart
,
A.
,
2003
, “
Genetic Algorithms in Computer Aided Design
,”
Comput.-Aided Des.
,
35
(
8
), pp.
709
726
.10.1016/S0010-4485(03)00003-4
58.
DeJong
,
K. A.
, and
Spears
,
W. M.
,
1990
, “
An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms
,”
First Workshop Parallel Problem Solving From Nature
, Springer, Berlin, Germany, pp.
38
47
.
You do not currently have access to this content.