This paper presents the application of artificial neural network (ANN) in prediction of heat transfer coefficients (HTCs) of two-phase flow of air–water in a pipe in the horizontal and slightly upward inclined (2, 5, and 7 deg) positions. For this purpose, the superficial liquid and gas Reynolds numbers and the inclination of the pipe were used as input parameters, while the HTCs of two-phase flow were used as output parameters in training and testing of the multilayered, feedforward, backpropagation neural networks. In this present study, experimental data were taken from literature and then used for the ANN model. The superficial liquid and gas Reynolds numbers ranged from 740 to 26,100 and 560 to 47,600 for water and air, respectively. The mean deviations against experimental data were determined for the model. Results showed that the network predictions were in very good agreement with the experimental HTC data, whereas the correlation showed more deviations. Finally, results showed that the accuracy between the neural network predictions and experimental data was achieved with mean relative error (MRE) of 2.92% and correlation coefficient (R) that was 0.997 for all datasets, which suggests the reliability of the ANNs as a strong tool for predicting HTCs with two-phase flows.

References

References
1.
Kim
,
D.
,
Ghajar
,
A. J.
,
Dougherty
,
R. L.
, and
Ryali
,
V. K.
,
1999
, “
Comparison of 20 Two-Phase Heat Transfer Correlations With Seven Sets of Experimental Data, Including Flow Pattern and Tube Inclination Effects
,”
Heat Transfer Eng.
,
20
(
1
), pp.
15
40
.10.1080/014576399271691
2.
Kim
,
J.
, and
Ghajar
,
A. J.
,
2006
, “
A General Heat Transfer Correlation for Non-Boiling Gas–Liquid Flow With Different Flow Patterns in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
32
(
4
), pp.
447
465
.10.1016/j.ijmultiphaseflow.2006.01.002
3.
Ghajar
,
A. J.
,
2004
, “
Non-Boiling Heat Transfer in Gas–Liquid Flow in Pipes—A Tutorial
,”
Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering
, Rio de Janeiro, Nov. 29–Dec. 3, pp.
46
73
.
4.
McClafin
,
G. G.
, and
Whitfill
,
D. L.
,
1984
, “
Control of Paraffin Deposition in Production Operations
,”
J. Pet. Technol.
,
36
(
11
), pp.
1965
1970
.10.2118/12204-PA
5.
Hajmohammadi
,
M. R.
, and
Nourazar
,
S. S.
,
2014
, “
On the Insertion of a Thin Gas Layer in Micro Cylindrical Couette Flows Involving Power-Law Liquids
,”
Int. J. Heat Mass Transfer
,
75
, pp.
97
108
.10.1016/j.ijheatmasstransfer.2014.03.065
6.
Hajmohammadi
,
M. R.
,
Nourazar
,
S. S.
, and
Campo
,
A.
,
2014
, “
Analytical Solution for Two-Phase Flow Between Two Rotating Cylinders Filled With Power Law Liquid and a Micro Layer of Gas
,”
J. Mech. Sci. Technol.
,
28
(
5
), pp.
1849
1854
.10.1007/s12206-014-0332-y
7.
Jambunathan
,
K.
,
Hartle
,
S. L.
,
Ashforthfrost
,
S.
, and
Fontama
,
V. N.
,
1996
, “
Evaluating Convective Heat Transfer Coefficients Using Neural Networks
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2329
2332
.10.1016/0017-9310(95)00332-0
8.
Sun
,
Z.
, and
Zhang
,
H.
,
2008
, “
Neural Networks Approach for Prediction of Gas–Liquid Two-Phase Flow Pattern Based on Frequency Domain Analysis of Vortex Flowmeter Signals
,”
Meas. Sci. Technol.
,
19
(
1
), pp.
1
8
.
9.
Thibault
,
J.
, and
Grandjean
,
B. P. A.
,
1991
, “
A Neural Network Methodology for Heat Transfer Data Analysis
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2063
2070
.10.1016/0017-9310(91)90217-3
10.
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
1996
, “
Analysis of Data From Single-Row Heat Exchanger Experiments Using an Artificial Neural Network
,”
ASME International Mechanical Engineering Congress and Exposition
, Atlanta, GA, Nov. 17–22, Vol.
242
, pp.
45
52
.
11.
Pacheco-Vega
,
A.
,
2002
, “
Simulation of Compact Heat Exchangers Using Global Regression and Soft Computing
,” Ph.D. thesis, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN.
12.
Pacheco-Vega
,
A.
,
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
2000
, “
Heat Rate Predictions in Humid Air–Water Heat Exchangers Using Correlations and Neural Networks
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
348
354
.10.1115/1.1351167
13.
Pacheco-Vega
,
A.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
2001
, “
Neural Network Analysis of Fin-Tube Refrigeration Heat Exchanger With Limited Experimental Data
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
763
770
.10.1016/S0017-9310(00)00139-3
14.
Peng
,
H.
, and
Ling
,
X.
,
2009
, “
Neural Networks Analysis of Thermal Characteristics on Plate-Fin Heat Exchangers With Limited Experimental Data
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2251
2256
.10.1016/j.applthermaleng.2008.11.011
15.
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Walters
,
D. K.
,
2007
, “
Correlating Heat Transfer and Friction in Helically-Finned Tubes Using Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4713
4723
.10.1016/j.ijheatmasstransfer.2007.03.043
16.
Kiran
,
T. R.
, and
Rajput
,
S. P. S.
,
2011
, “
An Effectiveness Model for an Indirect Evaporative Cooling (IEC) System: Comparison of Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Fuzzy Inference System (FIS) Approach
,”
Appl. Soft Comput.
,
11
(
4
), pp.
3525
3533
.10.1016/j.asoc.2011.01.025
17.
Yang
,
K. T.
,
2008
, “
Artificial Neural Networks (ANNs): A New Paradigm for Thermal Science and Engineering
,”
ASME J. Heat Transfer
,
130
(
9
), p.
093001
.10.1115/1.2944238
18.
Wang
,
Q. W.
,
Zhang
,
D. J.
, and
Xie
,
G. N.
,
2009
, “
Experimental Study and Genetic-Algorithm Based Correlation on Pressure Drop and Heat Transfer Performances of a Cross-Corrugated Primary Surface Heat Exchanger
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061802
.10.1115/1.3090716
19.
Sudhakar
,
T. V. V.
,
Shori
,
A.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2009
, “
Optimal Heat Distribution Among Discrete Protruding Heat Sources in a Vertical Duct: A Combined Numerical and Experimental Study
,”
ASME J. Heat Transfer
,
132
(
1
), p.
011401
.10.1115/1.3194762
20.
Poulad
,
M. E.
,
Naylor
,
D.
, and
Fung
,
A. S.
,
2010
, “
Prediction of Local Heat Transfer in a Vertical Cavity Using Artificial Neutral Networks
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122501
.10.1115/1.4002327
21.
Ahmadi
,
P.
,
Hajabdollahi
,
H.
, and
Dincer
,
I.
,
2010
, “
Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021801
.10.1115/1.4002599
22.
Geb
,
D.
,
Zhou
,
F.
,
DeMoulin
,
G.
, and
Catton
,
I.
,
2013
, “
Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory
,”
ASME J. Heat Transfer
,
135
(
8
), p.
082602
.10.1115/1.4024091
23.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.10.1115/1.4027195
24.
Tenglong
,
C.
,
Guanghui
,
S.
,
Suizheng
,
Q.
, and
Wenxi
,
T.
,
2013
, “
Applications of ANNs in Flow and Heat Transfer Problems in Nuclear Engineering: A Review Work
,”
Prog. Nucl. Energy
,
62
, pp.
54
71
.10.1016/j.pnucene.2012.09.003
25.
Trafalis
,
T. B.
,
Olutayo
,
O.
, and
Dimitrios
,
V. P.
,
2005
, “
Two-Phase Flow Regime Identification With a Multiclassification Support Vector Machine (SVM) Model
,”
Ind. Eng. Chem. Res.
,
44
(
12
), pp.
4414
4426
.10.1021/ie048973l
26.
Tambouratzis
,
T.
, and
Pazsit
,
I.
,
2009
, “
Non-Invasive On-Line Two-Phase Flow Regime Identification Employing Artificial Neural Networks
,”
Ann. Nucl. Energy
,
36
(
4
), pp.
464
469
.10.1016/j.anucene.2008.12.002
27.
Tambouratzis
,
T.
, and
Pazsit
,
I.
,
2010
, “
A General Regression Artificial Neural Network for Two-Phase Flow Regime Identification
,”
Ann. Nucl. Energy
,
37
(
5
), pp.
672
680
.10.1016/j.anucene.2010.02.004
28.
Liu
,
Y.
, and
Zhang
,
S. F.
,
2010
, “
Local Flow Regime Identification for Boiling Two-Phase Flow by BP Neural Networks Approach
,”
Sixth International Conference on Natural Computation
, Yantai, China, Aug. 10–12, Vol.
1
, pp.
362
366
.10.1109/ICNC.2010.5583827
29.
MathWorks
,
2012
,
matlab® R2012b, Neural Network Toolbox
,
The MathWorks, Inc.
,
Natick, MA
.
30.
Widrow
,
B.
,
Winter
,
R. G.
, and
Baxter
,
R. A.
,
1988
, “
Layered Neural Nets for Pattern Recognition
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
36
(
7
), pp.
1109
1118
.10.1109/29.1638
31.
Barnard
,
E.
, and
Wessels
,
L.
,
1992
, “
Extrapolation and Interpolation in Neural Network Classifiers
,”
IEEE Control Syst.
,
12
(
5
), pp.
50
53
.10.1109/37.158898
32.
White
,
H.
,
1990
, “
Connectionist Nonparametric Regression: Multilayer Feedforward Networks Can Learn Arbitrary Mappings
,”
Neural Networks
,
3
(
8
), pp.
535
549
.10.1016/0893-6080(90)90004-5
33.
Walczak
,
S.
,
1995
, “
Developing Neural Nets Currency Trading
,”
Artif. Intell. Finance
,
2
(
1
), pp.
27
34
.
34.
Bansal
,
A.
,
Kanuffman
,
R. J.
, and
Weitz
,
R. R.
,
1993
, “
Comparing the Modeling Performance of Regression and Neural Networks as Data Quality Varies: A Business Value Approach
,”
J. Manage. Inf. Syst.
,
10
, pp.
11
32
.
35.
Tamura
,
S.
, and
Tateishi
,
M.
,
1997
, “
Capabilities of Four Layered Feed Forward Neural Network: Four Layers Versus Three
,”
IEEE Trans. Neural Networks
,
8
(
2
), pp.
251
255
.10.1109/72.557662
36.
Ghajar
,
A. J.
, and
Tang
,
C. C.
,
2007
, “
Heat Transfer Measurements, Flow Pattern Maps, and Flow Visualization for Non-Boiling Two-Phase Flow in Horizontal and Slightly Inclined Pipe
,”
Heat Transfer Eng.
,
28
(
6
), pp.
525
540
.10.1080/01457630701193906
You do not currently have access to this content.