This paper presents the evolution of architecture of high conductivity pathways embedded into a heat generating body on the basis of Constructal theory. The main objective is to introduce new geometries for the highly conductive pathways, precisely configurations shaped as V. Four types of V-shaped inserts, evolving from “V1” to “V4,” have been comparatively considered. Geometric optimization of design is conducted to minimize the peak temperature of the heat generating piece. Many ideas emerged from this work: first of all, the numerical results demonstrated that the V-shaped pathways remarkably surpass the performance of some basic configurations already mentioned in literature, i.e., “I and X-shaped” pathways. Furthermore, the evolution of configurations from V1 to V4 resulted in a gradual reduction of the hot spot temperature, according to the principle of “optimal distribution of imperfections” that characterizes the constructal law.

References

References
1.
Bejan
,
A.
,
1997
,
Advanced Engineering Thermodynamics
,
2nd ed.
,
Wiley
,
New York
.
2.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
3.
Reis
,
A. H.
,
2006
, “
Constructal Theory: From Engineering to Physics and How Flow Systems Develop Shape and Structure
,”
ASME Appl. Mech. Rev.
,
59
(
5
), pp.
269
282
.10.1115/1.2204075
4.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
New York
.
5.
Almogbel
,
M.
,
2005
, “
Constructal Tree-Shaped Fins
,”
Int. J. Therm. Sci.
,
44
(
4
) pp.
342
348
.10.1016/j.ijthermalsci.2004.11.002
6.
Almogbel
,
M.
, and
Bejan
,
A.
,
2000
, “
Cylindrical Trees of Pin Fins
,”
Int. J. Heat Mass Transfer
,
43
(
23
), pp.
4285
4297
.10.1016/S0017-9310(00)00049-1
7.
Bello-Ochende
,
T.
,
Meyer
,
J. P.
, and
Bejan
,
A.
,
2010
, “
Constructal Multi-Scale Pin–Fins
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2773
2779
.10.1016/j.ijheatmasstransfer.2010.02.021
8.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2101
2115
.10.1016/S0017-9310(99)00283-5
9.
Kundu
,
B.
, and
Bhanja
,
D.
,
2010
, “
Performance and Optimization Analysis of a Constructal T-Shaped Fin Subject to Variable Thermal Conductivity and Convective Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
254
267
.10.1016/j.ijheatmasstransfer.2009.09.034
10.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2006
, “
Constructal Design of Y-Shaped Assembly of Fins
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4552
4557
.10.1016/j.ijheatmasstransfer.2006.05.019
11.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1458
1463
.10.1016/j.ijheatmasstransfer.2008.09.007
12.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Geometric Optimization of T-Y-Shaped Cavity According to Constructal Design
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4683
4688
.10.1016/j.ijheatmasstransfer.2009.06.020
13.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
,
Campo
,
A.
, and
Nourazar
,
S. S.
,
2013
, “
Valuable Reconsideration in the Constructal Design of Cavities
,”
Energy Convers. Manage.
,
66
, pp.
33
40
.10.1016/j.enconman.2012.09.031
14.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
15.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1982
, “
Ultrahigh Thermal Conductance Microstructures for Integrated Circuits
,”
IEEE Proceedings of the 32nd Electronic Conference
, Vol.
101
, pp.
145
149
.
16.
Wang
,
X. A.
,
Mujumdar
,
S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.10.1016/j.ijthermalsci.2006.01.010
17.
Naphon
,
P.
, and
Khonseur
,
O.
,
2009
, “
Study on the Convective Heat Transfer and Pressure Drop in the Micro-Channel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
36
(
1
), pp.
39
44
.10.1016/j.icheatmasstransfer.2008.09.001
18.
Tiselj
,
I.
,
Hetsroni
,
G.
,
Mavko
,
B.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2004
, “
Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2551
2565
.10.1016/j.ijheatmasstransfer.2004.01.008
19.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,”
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
20.
Almogbel
,
M.
, and
Bejan
,
A.
,
2001
, “
Constructal Optimization of Nonuniformly Distributed Tree-Shaped Flow Structures for Conduction
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4185
4194
.10.1016/S0017-9310(01)00080-1
21.
Almogbel
,
M.
, and
Bejan
,
A.
,
1999
, “
Conduction Trees With Spacings at the Tips
,”
Int. J Heat Mass Transfer
,
42
(
20
), pp.
3739
3756
.10.1016/S0017-9310(99)00051-4
22.
Ledezma
,
G. A.
,
Bejan
,
A.
, and
Errera
,
M. R.
,
1997
, “
Constructal Tree Networks for Heat Transfer
,”
J. Appl. Phys.
,
82
(
1
), pp.
89
100
.10.1063/1.365853
23.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1643
1652
.10.1016/S0017-9310(01)00269-1
24.
Ghodoossi
,
L.
, and
Eǧrican
,
N.
,
2004
, “
Conductive Cooling of Triangular Shaped Electronics Using Constructal Theory
,”
Energy Convers. Manage.
,
45
(
6
), pp.
811
828
.10.1016/S0196-8904(03)00190-0
25.
Gosselin
,
L.
, and
Bejan
,
A.
,
2004
, “
Constructal Heat Trees at Micro and Nanoscales
,”
J. Appl. Phys.
,
96
(
10
), pp.
5852
5859
.10.1063/1.1782278
26.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2006
, “
Conduction Tree Networks With Loops for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2626
2635
.10.1016/j.ijheatmasstransfer.2006.01.017
27.
Wei
,
S.
,
Chen
,
L.
, and
Sun
,
F.
,
2009
, “
The Area-Point Constructal Optimization for Discrete Variable Cross-Section Conducting Path
,”
Appl. Energy
,
86
(
7–8
), pp.
1111
1118
.10.1016/j.apenergy.2008.06.010
28.
Marck
,
G.
,
Harion
,
J. L.
,
Nemer
,
M.
,
Russeil
,
S.
, and
Bougeard
,
D.
,
2011
, “
A New Perspective of Constructal Networks Cooling a Finite-Size Volume Generating Heat
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1033
1046
.10.1016/j.enconman.2010.08.032
29.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of X-Shaped Conductive Pathways for Cooling a Heat-Generating Body
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
513
520
.10.1016/j.ijheatmasstransfer.2012.11.040
30.
Reis
,
A. H.
,
Miguel
,
F.
, and
Aydin
,
M.
,
2004
, “
Constructal Theory of Flow Architecture of the Lungs
,”
Med. Phys.
31
(5), pp.
1135
1140
.10.1118/1.1705443
31.
Pelletier
,
J. D.
, and
Turcotte
,
D. L.
,
2000
, “
Shapes of River Networks and Leaves: Are They Statistically Similar?
,”
Philos. Trans. R. Soc., B
,
355
(
1665
), pp.
307
311
.10.1098/rstb.2000.0566
You do not currently have access to this content.