Entropy generation is squarely linked with irreversibility, and consequently with exergy destruction within a thermal system. This study concerns with the temperature distribution, and local and volumetric averaged entropy generation rates within a cylindrical system with two solid co-rotating inner and outer parts and the middle nanofluid flow part. Temperature-dependent thermal conductivities for solid materials are included within the modeling. To obtain the temperature formula within all three sections, a combined analytical–numerical solution technique is applied. An exact analytical solution is also obtained, when constant thermal conductivities for solid materials are assumed. The resultant data from the analytical–numerical solution technique is verified against the investigated exact solution. Thereafter, the velocity and temperature fields from the combined analytical–numerical solution technique are incorporated into the entropy generation formulations to obtain the local and volumetric averaged entropy generation rates. Using abovementioned procedure, the effects of thermophysical parameters such as nanoparticles volume concentration, Brinkman number, thermal conductivity parameter ratios, outer temperature boundary condition, internal heat generation rates and velocity ratios on the temperature field, and entropy generation rates are investigated.

References

References
1.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
, Boca Raton, FL.
2.
Torabi
,
M.
, and
Zhang
,
K.
,
2014
, “
Temperature Distribution and Classical Entropy Generation Analyses in an Asymmetric Cooling Composite Hollow Cylinder With Temperature-Dependent Thermal Conductivity and Internal Heat Generation
,”
Energy
,
73
, pp.
484
496
.10.1016/j.energy.2014.06.041
3.
Torabi
,
M.
, and
Aziz
,
A.
,
2012
, “
Entropy Generation in a Hollow Cylinder With Temperature Dependent Thermal Conductivity and Internal Heat Generation With Convective–Radiative Surface Cooling
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1487
1495
.10.1016/j.icheatmasstransfer.2012.10.009
4.
Torabi
,
M.
, and
Zhang
,
K.
,
2014
, “
Classical Entropy Generation Analysis in Cooled Homogenous and Functionally Graded Material Slabs With Variation of Internal Heat Generation With Temperature, and Convective–Radiative Boundary Conditions
,”
Energy
,
65
, pp.
387
397
.10.1016/j.energy.2013.11.020
5.
Mahmoudi
,
A. H.
,
Pop
,
I.
,
Shahi
,
M.
, and
Talebi
,
F.
,
2013
, “
MHD Natural Convection and Entropy Generation in a Trapezoidal Enclosure Using Cu–Water Nanofluid
,”
Comput. Fluids
,
72
, pp.
46
62
.10.1016/j.compfluid.2012.11.014
6.
Mahmoudi
,
A. H.
,
Shahi
,
M.
, and
Talebi
,
F.
,
2012
, “
Entropy Generation due to Natural Convection in a Partially Open Cavity With a Thin Heat Source Subjected to a Nanofluid
,”
Numer. Heat Transfer, Part A
,
61
(
4
), pp.
283
305
.10.1080/10407782.2012.647990
7.
Mahian
,
O.
,
Mahmud
,
S.
, and
Heris
,
S. Z.
,
2012
, “
Analysis of Entropy Generation Between Co-Rotating Cylinders Using Nanofluids
,”
Energy
,
44
(
1
), pp.
438
446
.10.1016/j.energy.2012.06.009
8.
Liu
,
L. H.
, and
Chu
,
S. X.
,
2006
, “
On the Entropy Generation Formula of Radiation Heat Transfer Processes
,”
ASME J. Heat Transfer
,
128
(
5
), pp.
504
–506.10.1115/1.2190695
9.
Makhanlall
,
D.
,
Munda
,
J. L.
, and
Jiang
,
P.
,
2013
, “
Entropy Generation in a Solar Collector Filled With a Radiative Participating Gas
,”
Energy
,
60
, pp.
511
516
.10.1016/j.energy.2013.08.043
10.
Aziz
,
A.
, and
Torabi
,
M.
,
2013
, “
Transient Response and Entropy Generation Minimisation of a Finite Size Radiation Heat Shield With Finite Heat Capacity and Temperature-Dependent Emissivities
,”
Int. J. Exergy
,
12
(
1
), pp.
87
–108.10.1504/IJEX.2013.052545
11.
Ibáñez
,
G.
,
López
,
A.
, and
Cuevas
,
S.
,
2012
, “
Optimum Wall Thickness Ratio Based on the Minimization of Entropy Generation in a Viscous Flow Between Parallel Plates
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
587
592
.10.1016/j.icheatmasstransfer.2012.03.011
12.
Arikoglu
,
A.
,
Ozkol
,
I.
, and
Komurgoz
,
G.
,
2008
, “
Effect of Slip on Entropy Generation in a Single Rotating Disk in MHD Flow
,”
Appl. Energy
,
85
(
12
), pp.
1225
1236
.10.1016/j.apenergy.2008.03.004
13.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2013
, “
Numerical Investigation of MHD Effects on Al2O3–Water Nanofluid Flow and Heat Transfer in a Semi-Annulus Enclosure Using LBM
,”
Energy
,
60
, pp.
501
510
.10.1016/j.energy.2013.07.070
14.
Turkyilmazoglu
,
M.
,
2012
, “
Exact Analytical Solutions for Heat and Mass Transfer of MHD Slip Flow in Nanofluids
,”
Chem. Eng. Sci.
,
84
(
17
), pp.
182
187
.10.1016/j.ces.2012.08.029
15.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
16.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov. 12–17.
17.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
.10.1016/j.ijheatmasstransfer.2010.06.016
18.
Shalchi-Tabrizi
,
A.
, and
Seyf
,
H. R.
,
2012
, “
Analysis of Entropy Generation and Convective Heat Transfer of Al2O3 Nanofluid Flow in a Tangential Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4366
4375
.10.1016/j.ijheatmasstransfer.2012.04.005
19.
Mahian
,
O.
,
Mahmud
,
S.
, and
Wongwises
,
S.
,
2013
, “
Entropy Generation Between Two Rotating Cylinders With Magnetohydrodynamic Flow Using Nanofluids
,”
J. Thermophys. Heat Transfer
,
27
(
1
), pp.
161
169
.10.2514/1.T3908
20.
Mahian
,
O.
,
Mahmud
,
S.
, and
Heris
,
S. Z.
,
2012
, “
Effect of Uncertainties in Physical Properties on Entropy Generation Between Two Rotating Cylinders With Nanofluids
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101704
.10.1115/1.4006662
21.
Rashidi
,
M. M.
,
Abelman
,
S.
, and
Mehr
,
N. F.
,
2013
, “
Entropy Generation in Steady MHD Flow Due to a Rotating Porous Disk in a Nanofluid
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
515
525
.10.1016/j.ijheatmasstransfer.2013.03.004
22.
Cho
,
C.-C.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2013
, “
Natural Convection Heat Transfer and Entropy Generation in Wavy-Wall Enclosure Containing Water-Based Nanofluid
,”
Int. J. Heat Mass Transfer
,
61
, pp.
749
758
.10.1016/j.ijheatmasstransfer.2013.02.044
23.
Sohel
,
M. R.
,
Saidur
,
R.
,
Hassan
,
N. H.
,
Elias
,
M. M.
,
Khaleduzzaman
,
S. S.
, and
Mahbubul
,
I. M.
,
2013
, “
Analysis of Entropy Generation Using Nanofluid Flow Through the Circular Microchannel and Minichannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
85
91
.10.1016/j.icheatmasstransfer.2013.05.011
24.
Ting
,
T. W.
,
Hung
,
Y. M.
, and
Guo
,
N.
,
2014
, “
Entropy Generation of Nanofluid Flow With Streamwise Conduction in Microchannels
,”
Energy
,
64
, pp.
979
990
.10.1016/j.energy.2013.10.064
25.
Khorasanizadeh
,
H.
,
Nikfar
,
M.
, and
Amani
,
J.
,
2013
, “
Entropy Generation of Cu–Water Nanofluid Mixed Convection in a Cavity
,”
Eur. J. Mech.: B/Fluids
,
37
, pp.
143
152
.10.1016/j.euromechflu.2012.09.002
26.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2014
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Rotating Circular Cylinder
,”
ASME J. Heat Transfer
,
136
(
6
), p.
062501
.10.1115/1.4026470
27.
Parvin
,
S.
, and
Chamkha
,
A. J.
,
2014
, “
An Analysis on Free Convection Flow, Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled With Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
8
17
.10.1016/j.icheatmasstransfer.2014.02.031
28.
Parvin
,
S.
,
Nasrin
,
R.
, and
Alim
,
M. A.
,
2014
, “
Heat Transfer and Entropy Generation Through Nanofluid Filled Direct Absorption Solar Collector
,”
Int. J. Heat Mass Transfer
,
71
, pp.
386
395
.10.1016/j.ijheatmasstransfer.2013.12.043
29.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2013
, “
Second Law Analysis of Al2O3-Water Nanofluid Turbulent Forced Convection in a Circular Cross Section Tube With Constant Wall Temperature
,”
Adv. Mech. Eng.
,
2013
, p.
920278
.10.1155/2013/920278
30.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2014
, “
Entropy Generation Analysis of Turbulent Convection Flow of Al2O3–Water Nanofluid in a Circular Tube Subjected to Constant Wall Heat Flux
,”
Energy Convers. Manage.
,
77
, pp.
306
314
.10.1016/j.enconman.2013.09.049
31.
Mahian
,
O.
,
Kianifar
,
A.
,
Kleinstreuer
,
C.
,
Al-Nimr
,
M. A.
,
Pop
,
I.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2013
, “
A Review of Entropy Generation in Nanofluid Flow
,”
Int. J. Heat Mass Transfer
,
65
, pp.
514
532
.10.1016/j.ijheatmasstransfer.2013.06.010
32.
Ibáñez
,
G.
,
Cuevas
,
S.
, and
de Haro
,
M. L.
,
2003
, “
Minimization of Entropy Generation by Asymmetric Convective Cooling
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1321
1328
.10.1016/S0017-9310(02)00420-9
33.
Strub
,
F.
,
Castaing-Lasvignottes
,
J.
,
Strub
,
M.
,
Pons
,
M.
, and
Monchoux
,
F.
,
2005
, “
Second Law Analysis of Periodic Heat Conduction Through a Wall
,”
Int. J. Therm. Sci.
,
44
(
12
), pp.
1154
1160
.10.1016/j.ijthermalsci.2005.09.004
34.
Aziz
,
A.
, and
Khan
,
W. A.
,
2011
, “
Classical and Minimum Entropy Generation Analyses for Steady State Conduction With Temperature Dependent Thermal Conductivity and Asymmetric Thermal Boundary Conditions: Regular and Functionally Graded Materials
,”
Energy
,
36
(
10
), pp.
6195
6207
.10.1016/j.energy.2011.07.042
35.
Aziz
,
A.
, and
Khan
,
W. A.
,
2012
, “
Entropy Generation in an Asymmetrically Cooled Hollow Sphere With Temperature Dependent Internal Heat Generation
,”
Int. J. Exergy
,
10
(
1
), pp.
110
123
.10.1504/IJEX.2012.045064
36.
Fénot
,
M.
,
Bertin
,
Y.
,
Dorignac
,
E.
, and
Lalizel
,
G.
,
2011
, “
A Review of Heat Transfer Between Concentric Rotating Cylinders With or Without Axial Flow
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1138
1155
.10.1016/j.ijthermalsci.2011.02.013
37.
Goshima
,
T.
, and
Miyao
,
K.
,
1991
, “
Transient Thermal Stresses in a Hollow Cylinder Subjected to γ-Ray Heating and Convective Heat Losses
,”
Nucl. Eng. Des.
,
125
(
2
), pp.
267
273
.10.1016/0029-5493(91)90083-T
38.
Ünal
,
H. C.
,
1987
, “
Temperature Distributions in Fins With Uniform and Non-Uniform Heat Generation and Non-Uniform Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1465
1477
.10.1016/0017-9310(87)90178-5
39.
Razelos
,
P.
, and
Satyaprakash
,
B. R.
,
1996
, “
Analysis and Optimization of Convective Trapezoidal Profile Pin Fins With Internal Heat Generation
,”
Int. Commun. Heat Mass Transfer
,
23
(
5
), pp.
643
654
.10.1016/0735-1933(96)00047-4
40.
Aziz
,
A.
, and
Bouaziz
,
M. N.
,
2011
, “
A Least Squares Method for a Longitudinal Fin With Temperature Dependent Internal Heat Generation and Thermal Conductivity
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2876
2882
.10.1016/j.enconman.2011.04.003
41.
Kundu
,
B.
, and
Das
,
P. K.
,
2005
, “
Optimum Profile of Thin Fins With Volumetric Heat Generation: A Unified Approach
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
945
–948.10.1115/1.1929784
42.
Torabi
,
M.
, and
Zhang
,
Q. B.
,
2013
, “
Analytical Solution for Evaluating the Thermal Performance and Efficiency of Convective–Radiative Straight Fins With Various Profiles and Considering all Non-Linearities
,”
Energy Convers. Manage.
,
66
, pp.
199
210
.10.1016/j.enconman.2012.10.015
43.
Aziz
,
A.
,
Torabi
,
M.
, and
Zhang
,
K.
,
2013
, “
Convective–Radiative Radial Fins With Convective Base Heating and Convective–Radiative Tip Cooling: Homogeneous and Functionally Graded Materials
,”
Energy Convers. Manage.
,
74
, pp.
366
376
.10.1016/j.enconman.2013.05.034
44.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Ashorynejad
,
H. R.
,
2013
, “
Investigation of Squeezing Unsteady Nanofluid Flow Using ADM
,”
Powder Technol.
,
239
, pp.
259
265
.10.1016/j.powtec.2013.02.006
45.
Sheikholeslami
,
M.
,
Bandpy
,
M. G.
,
Ellahi
,
R.
,
Hassan
,
M.
, and
Soleimani
,
S.
,
2014
, “
Effects of MHD on Cu–Water Nanofluid Flow and Heat Transfer by Means of CVFEM
,”
J. Magn. Magn. Mater.
,
349
, pp.
188
200
.10.1016/j.jmmm.2013.08.040
46.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2013
, “
Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates
,”
Powder Technol.
,
235
, pp.
873
879
.10.1016/j.powtec.2012.11.030
47.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2011
, “
Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
341
349
.10.1016/j.ijthermalsci.2010.03.008
48.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transfer
,
59
, pp.
433
450
.10.1016/j.ijheatmasstransfer.2012.12.032
49.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2012
, “
Mixed Convective Heat Transfer of Nanofluids Past a Circular Cylinder in Cross Flow in Unsteady Regime
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4783
4799
.10.1016/j.ijheatmasstransfer.2012.04.046
50.
Ganguly
,
S.
, and
Chakraborty
,
S.
,
2009
, “
Effective Viscosity of Nanoscale Colloidal Suspensions
,”
J. Appl. Phys.
,
106
(
12
), p.
124309
.10.1063/1.3270423
51.
Ganguly
,
S.
,
Sikdar
,
S.
, and
Basu
,
S.
,
2009
, “
Experimental Investigation of the Effective Electrical Conductivity of Aluminum Oxide Nanofluids
,”
Powder Technol.
,
196
(
3
), pp.
326
330
.10.1016/j.powtec.2009.08.010
52.
Goodarzi
,
M.
,
Safaei
,
M. R.
,
Vafai
,
K.
,
Ahmadi
,
G.
,
Dahari
,
M.
,
Kazi
,
S. N.
, and
Jomhari
,
N.
,
2014
, “
Investigation of Nanofluid Mixed Convection in a Shallow Cavity Using a Two-Phase Mixture Model
,”
Int. J. Therm. Sci.
,
75
, pp.
204
220
.10.1016/j.ijthermalsci.2013.08.003
53.
Göktepe
,
S.
,
Atalık
,
K.
, and
Ertürk
,
H.
,
2014
, “
Comparison of Single and Two-Phase Models for Nanofluid Convection at the Entrance of a Uniformly Heated Tube
,”
Int. J. Therm. Sci.
,
80
, pp.
83
92
.10.1016/j.ijthermalsci.2014.01.014
54.
Malvandi
,
A.
,
Ganji
,
D. D.
,
Hedayati
,
F.
, and
Rad
,
E. Y.
,
2013
, “
An Analytical Study on Entropy Generation of Nanofluids Over a Flat Plate
,”
Alexandria Eng. J.
,
52
(
4
), pp.
595
604
.10.1016/j.aej.2013.09.002
55.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Entropy Generation of Nanofluid in Presence of Magnetic Field Using Lattice Boltzmann Method
,”
Phys. A
417
(1), pp. 273–286.
56.
Malvandi
,
A.
, and
Ganji
,
D. D.
,
2014
, “
Brownian Motion and Thermophoresis Effects on Slip Flow of Alumina/Water Nanofluid Inside a Circular Microchannel in the Presence of a Magnetic Field
,”
Int. J. Therm. Sci.
,
84
, pp.
196
206
.10.1016/j.ijthermalsci.2014.05.013
57.
Ganji
,
D. D.
, and
Malvandi
,
A.
,
2014
, “
Natural Convection of Nanofluids Inside a Vertical Enclosure in the Presence of a Uniform Magnetic Field
,”
Powder Technol.
,
263
, pp.
50
57
.10.1016/j.powtec.2014.04.089
58.
Malvandi
,
A.
, and
Ganji
,
D. D.
,
2014
, “
Mixed Convective Heat Transfer of Water/Alumina Nanofluid Inside a Vertical Microchannel
,”
Powder Technol.
,
263
, pp.
37
44
.10.1016/j.powtec.2014.04.084
59.
Alvariño
,
P. F.
,
Jabardo
,
J. M. S.
,
Agras
,
J. D. P.
, and
Simón
,
M. L. S.
,
2013
, “
Heat Flux Effect in Laminar Flow of a Water/Alumina Nanofluid
,”
Int. J. Heat Mass Transfer
,
66
, pp.
376
381
.10.1016/j.ijheatmasstransfer.2013.07.035
60.
Zaimi
,
K.
,
Ishak
,
A.
, and
Pop
,
I.
,
2014
, “
Unsteady Flow due to a Contracting Cylinder in a Nanofluid Using Buongiorno's Model
,”
Int. J. Heat Mass Transfer
,
68
, pp.
509
513
.10.1016/j.ijheatmasstransfer.2013.09.047
61.
Mahian
,
O.
,
Mahmud
,
S.
, and
Pop
,
I.
,
2012
, “
Analysis of First and Second Laws of Thermodynamics Between Two Isothermal Cylinders With Relative Rotation in the Presence of MHD Flow
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4808
4816
.10.1016/j.ijheatmasstransfer.2012.04.048
62.
Yazdi
,
M. H.
,
Abdullah
,
S.
,
Hashim
,
I.
, and
Sopian
,
K.
,
2011
, “
Entropy Generation Analysis of Open Parallel Microchannels Embedded Within a Permeable Continuous Moving Surface: Application to Magnetohydrodynamics (MHD)
,”
Entropy
,
14
(
12
), pp.
1
23
.10.3390/e14010001
63.
Kreyszig
,
E.
,
2011
,
Advanced Engineering Mathematics
,
Wiley
, Hoboken, NJ.
64.
Mahian
,
O.
,
Pop
,
I.
,
Sahin
,
A. Z.
,
Oztop
,
H. F.
, and
Wongwises
,
S.
,
2013
, “
Irreversibility Analysis of a Vertical Annulus Using TiO2/Water Nanofluid With MHD Flow Effects
,”
Int. J. Heat Mass Transfer
,
64
, pp.
671
679
.10.1016/j.ijheatmasstransfer.2013.05.001
You do not currently have access to this content.