Single-phase convective heat transfer of nanofluids has been studied extensively, and different degrees of enhancement were observed over the base fluids, whereas there is still debate on the improvement in overall thermal performance when both heat transfer and hydrodynamic characteristics are considered. Meanwhile, very few studies have been devoted to investigating two-phase heat transfer of nanofluids, and it remains inconclusive whether the same pessimistic outlook should be expected. In this work, an experimental study of forced convective flow boiling and two-phase flow was conducted for Al2O3–water nanofluids through a minichannel. General flow boiling heat transfer characteristics were measured, and the effects of nanofluids on the onset of nucleate boiling (ONB) were studied. Two-phase flow instabilities were also explored with an emphasis on the transition boundaries of onset of flow instabilities (OFI). It was found that the presence of nanoparticles delays ONB and suppresses OFI, and the extent is correlated to the nanoparticle volume concentration. These effects were attributed to the changes in available nucleation sites and surface wettability as well as thinning of thermal boundary layers in nanofluid flow. Additionally, it was observed that the pressure-drop type flow instability prevails in two-phase flow of nanofluids, but with reduced amplitude in pressure, temperature, and mass flux oscillations.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
1995 ASME International Mechanical Engineering Congress and Exposition
, San Francisco, CA, Nov. 12–17, p.
6
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
, and
Keblinski
,
P.
,
2004
, “
Nanofluids
,”
Encyclopedia of Nanoscience and Nanotechnology
,
H. S.
Nalwa
, ed.,
American Scientific Pub
,
Los Angeles, CA
.
3.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
,
2008
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.10.1080/01457630701850851
4.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
5.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143116
.10.1063/1.2192971
6.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
,
2008
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Powder Technol.
,
183
(
1
), pp.
63
72
.10.1016/j.powtec.2007.11.014
7.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
,
2005
, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
6
), pp.
1107
1116
.10.1016/j.ijheatmasstransfer.2004.09.038
8.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
9.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
10.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2272
2281
.10.1016/j.ijheatmasstransfer.2006.10.024
11.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
12.
Routbort
,
J.
,
Singh
,
D.
,
Timofeeva
,
E.
,
Yu
,
W.
, and
France
,
D.
,
2011
, “
Pumping Power of Nanofluids in a Flowing System
,”
J. Nanopart. Res.
,
13
(
3
), pp.
931
937
.10.1007/s11051-010-0197-7
13.
Corcione
,
M.
,
Cianfrini
,
M.
, and
Quintino
,
A.
,
2012
, “
Pumping Energy Saving Using Nanoparticle Suspensions as Heat Transfer Fluids
,”
ASME J. Heat Transfer
,
134
(
12
), p.
121701
.10.1115/1.4007314
14.
Leyuan
,
Y.
, and
Dong
,
L.
,
2013
, “
Study of the Thermal Effectiveness of Laminar Forced Convection of Nanofluids for Liquid Cooling Applications
,”
IEEE Compon. Packag. Manuf. Technol.
,
3
(
10
), pp.
1693
1704
.10.1109/TCPMT.2013.2265261
15.
Bergman
,
T. L.
,
2009
, “
Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Forced Convection
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1240
1244
.10.1016/j.ijheatmasstransfer.2008.08.019
16.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Galanis
,
N.
,
Roy
,
G.
,
Maré
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2008
, “
Viscosity Data for Al2O3–Water Nanofluid—Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable?
,”
Int. J. Therm. Sci.
,
47
(
2
), pp.
103
111
.10.1016/j.ijthermalsci.2007.01.033
17.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.10.1063/1.2356113
18.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
.10.1016/j.ijheatmasstransfer.2010.06.016
19.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.10.1016/S0017-9310(02)00348-4
20.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes
,”
Int. J. Multiphase Flow
,
29
(
8
), pp.
1237
1247
.10.1016/S0301-9322(03)00105-8
21.
Das
,
S.
,
Prakash Narayan
,
G.
, and
Baby
,
A.
,
2008
, “
Survey on Nucleate Pool Boiling of Nanofluids: The Effect of Particle Size Relative to Roughness
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1099
1108
.10.1007/s11051-007-9348-x
22.
Narayan
,
G. P.
,
Anoop
,
K. B.
, and
Das
,
S. K.
,
2007
, “
Mechanism of Enhancement/Deterioration of Boiling Heat Transfer Using Stable Nanoparticle Suspensions Over Vertical Tubes
,”
J. Appl. Phys.
,
102
(
7
), p.
074317
.10.1063/1.2794731
23.
Chopkar
,
M.
,
Das
,
A.
,
Manna
,
I.
, and
Das
,
P.
,
2008
, “
Pool Boiling Heat Transfer Characteristics of ZrO2–Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
,
44
(
8
), pp.
999
1004
.10.1007/s00231-007-0345-5
24.
Vassallo
,
P.
,
Kumar
,
R.
, and
D'Amico
,
S.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
407
411
.10.1016/S0017-9310(03)00361-2
25.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based Gamma-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
265
274
.10.1007/s11051-005-3478-9
26.
Bang
,
I. C.
, and
Heung Chang
,
S.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
27.
Milanova
,
D.
, and
Kumar
,
R.
,
2005
, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
,
87
(
23
), p.
233107
.10.1063/1.2138805
28.
Milanova
,
D.
, and
Kumar
,
R.
,
2008
, “
Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042401
.10.1115/1.2787020
29.
Liu
,
Z.-h.
,
Xiong
,
J.-g.
, and
Bao
,
R.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
,
33
(
12
), pp.
1284
1295
.10.1016/j.ijmultiphaseflow.2007.06.009
30.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
31.
Park
,
K.-J.
, and
Jung
,
D.
,
2007
, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4499
4502
.10.1016/j.ijheatmasstransfer.2007.03.012
32.
Xue
,
H. S.
,
Fan
,
J. R.
,
Hu
,
Y. C.
,
Hong
,
R. H.
, and
Cen
,
K. F.
,
2006
, “
The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two-Phase Closed Thermosyphon
,”
J. Appl. Phys.
,
100
(
10
), p.
104909
.10.1063/1.2357705
33.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
,
2006
, “
Experimental Study on CHF Characteristics of Water–TiO2 Nano-Fluids
,”
Nucl. Eng. Technol.
,
38
(
1
), pp.
61
68
.
34.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2006
, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
(
15
), p.
153107
.10.1063/1.2360892
35.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
36.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2008
, “
Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
,
130
(
4
), p.
044501
.10.1115/1.2818787
37.
Sefiane
,
K.
,
2006
, “
On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids
,”
Appl. Phys. Lett.
,
89
(
4
), p.
044106
.10.1063/1.2222283
38.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
39.
Xue
,
H. S.
,
Fan
,
J. R.
,
Hong
,
R. H.
, and
Hu
,
Y. C.
,
2007
, “
Characteristic Boiling Curve of Carbon Nanotube Nanofluid as Determined by the Transient Calorimeter Technique
,”
Appl. Phys. Lett.
,
90
(
18
), p.
184107
.10.1063/1.2736653
40.
Liu
,
D.
, and
Yu
,
L.
,
2011
, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031009
.10.1115/1.4002462
41.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1925
1935
.10.1016/j.ijheatmasstransfer.2003.09.031
42.
Yu
,
L.
,
Liu
,
D.
, and
Botz
,
F.
,
2012
, “
Laminar Convective Heat Transfer of Alumina-Polyalphaolefin Nanofluids Containing Spherical and Non-Spherical Nanoparticles
,”
Exp. Therm. Fluid Sci.
,
37
(2), pp.
72
83
.10.1016/j.expthermflusci.2011.10.005
43.
Ramilison
,
J. M.
,
Sadasivan
,
P.
, and
Lienhard
,
J. H.
,
1992
, “
Surface Factors Influencing Burnout on Flat Heaters
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
287
290
.10.1115/1.2911261
44.
Khandekar
,
S.
,
Joshi
,
Y. M.
, and
Mehta
,
B.
,
2008
, “
Thermal Performance of Closed Two-Phase Thermosyphon Using Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
6
), pp.
659
667
.10.1016/j.ijthermalsci.2007.06.005
45.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.10.1016/j.ijheatfluidflow.2008.07.004
46.
Ahn
,
H. S.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Chang
,
W.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of Critical Heat Flux Enhancement During Forced Convective Flow Boiling of Nanofluid on a Short Heated Surface
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
375
384
.10.1016/j.ijmultiphaseflow.2010.01.004
47.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2009
, “
Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043204
.10.1115/1.3072924
48.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis
,
University Science Books
,
New York
.
49.
Liu
,
Z. H.
, and
Qiu
,
Y. H.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface
,”
Heat Mass Transfer
,
43
(
7
), pp.
699
706
.10.1007/s00231-006-0159-x
50.
Sheikhbahai
,
M.
,
Nasr Esfahany
,
M.
, and
Etesami
,
N.
,
2012
, “
Experimental Investigation of Pool Boiling of Fe3O4/Ethylene Glycol–Water Nanofluid in Electric Field
,”
Int. J. Therm. Sci.
,
62
(12), pp.
149
153
.10.1016/j.ijthermalsci.2011.10.004
51.
Nnanna
,
A. G. A.
,
2007
, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
697
704
.10.1115/1.2717239
52.
Leighton
,
D.
, and
Acrivos
,
A.
,
1987
, “
The Shear-Induced Migration of Particles in Concentrated Suspensions
,”
J. Fluid Mech.
,
181
(9), pp.
415
439
.10.1017/S0022112087002155
53.
Phillips
,
R. J.
,
Armstrong
,
R. C.
,
Brown
,
R. A.
,
Graham
,
A. L.
, and
Abbott
,
J. R.
,
1992
, “
A Constitutive Equation for Concentrated Suspensions That Accounts for Shear-Induced Particle Migration
,”
Phys. Fluids A
,
4
(
1
), pp.
30
40
.10.1063/1.858498
54.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
55.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis
,
New York
.
56.
Liu
,
D.
,
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5134
5149
.10.1016/j.ijheatmasstransfer.2005.07.021
57.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1964
, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
365
372
.10.1115/1.3688697
58.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
,
1997
, “
Experimental Evaluation of the Onset of Subcooled Flow Boiling at High Liquid Velocity and Subcooling
,”
Int. J. Heat Mass Transfer
,
40
(
12
), pp.
2879
2885
.10.1016/S0017-9310(96)00345-6
59.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2002
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
717
728
.10.1115/1.1471522
60.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Prediction and Measurement of Incipient Boiling Heat Flux in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3933
3945
.10.1016/S0017-9310(02)00106-0
61.
Kakac
,
S.
, and
Bon
,
B.
,
2008
, “
A Review of Two-Phase Flow Dynamic Instabilities in Tube Boiling Systems
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
399
433
.10.1016/j.ijheatmasstransfer.2007.09.026
62.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R. G.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.10.1021/nl300049f
63.
Karsli
,
S.
,
Yilmaz
,
M.
, and
Comakli
,
O.
,
2002
, “
The Effect of Internal Surface Modification on Flow Instabilities in Forced Convection Boiling in a Horizontal Tube
,”
Int. J. Heat Fluid Flow
,
23
(
6
), pp.
776
791
.10.1016/S0142-727X(02)00147-9
64.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
,
1973
, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Des.
,
25
(
2
), pp.
165
192
.10.1016/0029-5493(73)90043-5
65.
Kakac
,
S.
,
1985
, “
Two-Phase Flow Instabilities in Boiling Systems: Summary and Review
,”
METU J. Pure Appl. Sci.
,
18
(
2
), pp. 171–252.
66.
Neal
,
L. G.
,
Zivi
,
S. M.
, and
Wright
,
R. W.
,
1967
, “
The Mechanisms of Hydrodynamic Instabilities in Boiling Channel
,”
Two-Phase Flow Dynamics Symposium: Euratom Report
, Eindhoven, The Netherlands, Paper No. 8.1.
67.
Ding
,
Y.
,
Kakaç
,
S.
, and
Chen
,
X. J.
,
1995
, “
Dynamic Instabilities of Boiling Two-Phase Flow in a Single Horizontal Channel
,”
Exp. Therm. Fluid Sci.
,
11
(
4
), pp.
327
342
.10.1016/0894-1777(95)00036-4
68.
Maulbetsch
,
J. S.
, and
Griffith
,
P.
,
1966
, “
System Induced Instabilities in Forced Convection Flow With Subcooled Boiling
,”
3rd International Heat Transfer Conference
, Chicago, IL, Aug. 7–12, pp.
247
257
.
69.
Stenning
,
A. H.
, and
Veziroglu
,
T. N.
,
1965
, “
Flow Oscillation Modes in Forced Convection Boiling
,”
Heat Transfer and Fluid Mechanics Institute
, Los Angeles, CA, June 21–23, pp.
301
316
.
70.
Zhang
,
T.
,
Wen
,
J. T.
,
Peles
,
Y.
,
Catano
,
J.
,
Zhou
,
R.
, and
Jensen
,
M. K.
,
2011
, “
Two-Phase Refrigerant Flow Instability Analysis and Active Control in Transient Electronics Cooling Systems
,”
Int. J. Multiphase Flow
,
37
(
1
), pp.
84
97
.10.1016/j.ijmultiphaseflow.2010.07.003
71.
Ozawa
,
M.
,
Nakanishi
,
S.
,
Ishigai
,
S.
,
Mizuta
,
Y.
, and
Tarui
,
H.
,
1979
, “
Flow Instabilities in Boiling Channels: Part I Pressure Drop Oscillation
,”
Bull. JSME
,
22
(
170
), pp.
1113
1118
.10.1299/jsme1958.22.1113
72.
Liu
,
H.
,
1993
, “
Pressure-Drop Type and Thermal Oscillations in Convective Boiling Systems
,” Ph.D. thesis, University of Miami, Miami, FL.
You do not currently have access to this content.