Polyalcohol has poor heat conduction performance. A fiber-enhanced polyalcohol binary system combines polyalcohol with a copper fiber net to improve its heat conduction performance. In a binary system without fibers, more heat input increases the wall temperature near the container than when the fiber is present. Compared to a polyalcohol binary system, pentaerythritol/Tris hydroxymethyl aminomethane (PE/TRIS) without fibers, fiber-enhanced polyalcohol system PE/TRIS shows quicker response to energy input from the exterior region. The phase change temperature in a fiber-enhanced polyalcohol binary system is much lower than that in a polyalcohol system without fibers. This is because of the metastate plastic state that presents a nonfaceted phase interface with a larger radius of curvature in a polyalcohol system without fibers. The porous structure of the fiber is smaller than the size of the phase interface in a polyalcohol system without fibers and can increase the equilibrium pressure and make the phase change easier.

References

References
1.
Font
,
J.
, and
Muntasell
,
J.
,
1995
, “
Plastic Crystals: Dilatometric and Thermobarometric Complementary Studies
,”
Mater. Res. Bull.
,
30
(
7
), pp.
839
834
.10.1016/0025-5408(95)00055-0
2.
Chandra
,
D.
,
Raja
,
C.
, and
Chen
,
W. M.
,
2005
, “
Thermodynamic Assessment of Binary Solid-State
,”
J. Phys. Chem. Solids
,
66
(
2–4
), pp.
235
240
.10.1016/j.jpcs.2004.08.047
3.
Wang
,
X. W.
, and
Xu
,
H. H.
,
2011
, “
Mechanism of Polyalcohol Solid–Solid Phase Change
,”
Acta Phys. Sin.
,
60
(
3
), p.
030507
.
4.
Wang
,
X. W.
, and
Xu
,
H. H.
,
2014
, “
Study of the Solid–Solid Phase Change in Polyalcohol Binary Systems
,”
Acta Phys. Sin.
,
63
(
13
), p.
136501
10.7498/aps.63.136501.
5.
Sturz
,
L.
,
Witusiewicz
, V
. T.
,
Hecht
,
U.
, and
Rex
,
S.
,
2004
, “
Organic Alloy System Suitable for the Investigation of Regular Binary and Ternary Eutectic Growth
,”
J. Cryst. Growth
,
270
(
1–2
), pp.
273
282
.10.1016/j.jcrysgro.2004.06.004
6.
Witusiewicz
, V
. T.
,
Hecht
,
U.
,
Sturz
,
L.
, and
Rex
,
S.
,
2006
, “
Phase Equilibria and Eutectic Growth in Ternary Organic System (D)Camphor–Neopentylglycol–Succinonitrile
,”
J. Cryst. Growth
,
286
(
2
), pp.
431
439
.10.1016/j.jcrysgro.2005.10.008
7.
Mogeritsch
,
J. P.
,
Ludwig
,
A.
,
Eck
,
S.
,
Grasser
,
M.
, and
McKay
,
B. J.
,
2009
, “
Thermal Stability of a Binary Non-Faceted/Non-Faceted Peritectic Organic Alloy at Elevated Temperatures
,”
Scr. Mater.
,
60
(
10
), pp.
882
885
.10.1016/j.scriptamat.2009.01.039
8.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
9.
Zalba
,
B.
,
Marn
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
10.
Agyenim
,
F.
,
Neil
,
H.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.10.1016/j.rser.2009.10.015
11.
Zhang
,
Z. Y.
, and
Xu
,
Y. P.
,
2001
, “
Measurement of the Thermal Conductivities of 2-Amino-2-Methyl-1,3-Propanediol (AMP), 2-Amino-2-Hydroxymethyl-1,3-Propanediol (TRIS) and the Mixture (AMP + TRIS, Mole Ratio 50:50) in the Temperature Range From 20 °C to Their Supermelting Temperatures
,”
Sol. Energy
,
71
(
5
), pp.
299
303
.10.1016/S0038-092X(01)00057-3
12.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1999
, “
Heat Transfer Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
65
(
3
), pp.
171
180
.10.1016/S0038-092X(98)00128-5
13.
Hamada
,
Y.
,
Ohtsu
,
W.
, and
Fukai
,
J.
,
2003
, “
Thermal Response in Thermal Energy Storage Material Round Heat Transfer Tubes: Effect of Additives on Heat Transfer Rates
,”
Sol. Energy
,
75
(
4
), pp.
317
328
.10.1016/j.solener.2003.07.028
14.
Fukai
,
J.
,
Hamada
,
Y.
,
Morozumi
,
Y.
, and
Miyatake
,
O.
,
2002
, “
Effect of Carbon-Fibre Brushes on Conductive Heat Transfer in Phase Change Materials
,”
Heat Mass Transfer
,
45
(
24
), pp.
4781
4792
.10.1016/S0017-9310(02)00179-5
15.
Wang
,
W. L.
,
Yang
,
X. X.
,
Fang
,
Y. T.
,
Ding
,
J.
, and
Yan
,
J. Y.
,
2009
, “
Enhanced Thermal Conductivity and Thermal Performance of Form-Stable Composite Phase Change Materials by Using B-Aluminum Nitride
,”
Appl. Energy
,
86
(
7–8
), pp.
1196
1200
.10.1016/j.apenergy.2008.10.020
16.
Griffiths
,
P. W.
, and
Eames
,
P. C.
,
2007
, “
Performance of Chilled Ceiling Panels Using Phase Change Material Slurries as the Heat Transport Medium
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1756
1760
.10.1016/j.applthermaleng.2006.07.009
17.
Wei
,
G. S.
,
Liu
,
Y. Y.
,
Zhang
,
X. X.
,
Yu
,
F.
, and
Du
,
X. Z.
,
2011
, “
Thermal Conductivities Study on Silica Aerogel and Its Composite Insulation Materials
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2355
2366
.10.1016/j.ijheatmasstransfer.2011.02.026
You do not currently have access to this content.