The stability of natural convection in a dielectric fluid-saturated vertical porous layer in the presence of a uniform horizontal AC electric field is investigated. The flow in the porous medium is governed by Brinkman–Wooding-extended-Darcy equation with fluid viscosity different from effective viscosity. The resulting generalized eigenvalue problem is solved numerically using the Chebyshev collocation method. The critical Grashof number Gc, the critical wave number ac, and the critical wave speed cc are computed for a wide range of Prandtl number Pr, Darcy number Da, the ratio of effective viscosity to the fluid viscosity Λ, and AC electric Rayleigh number Rea. Interestingly, the value of Prandtl number at which the transition from stationary to traveling-wave mode takes place is found to be independent of Rea. The interconnectedness of the Darcy number and the Prandtl number on the nature of modes of instability is clearly delineated and found that increasing in Da and Rea is to destabilize the system. The ratio of viscosities Λ shows stabilizing effect on the system at the stationary mode, but to the contrary, it exhibits a dual behavior once the instability is via traveling-wave mode. Besides, the value of Pr at which transition occurs from stationary to traveling-wave mode instability increases with decreasing Λ. The behavior of secondary flows is discussed in detail for values of physical parameters at which transition from stationary to traveling-wave mode takes place.

References

References
1.
Makinde
,
O. D.
,
2009
, “
On the Chebyshev Collocation Spectral Approach to Stability of Fluid Flow in a Porous Medium
,”
Int. J. Numer. Methods Fluids
,
59
(
7
), pp.
791
799
.10.1002/fld.1847
2.
Hill
,
A. A.
, and
Straughan
,
B.
,
2010
, “
Stability of Poiseuille Flow in a Porous Medium
,”
Advances in Mathematical Fluid Mechanics
,
R.
Rannacher
and
A.
Sequeria
, eds.,
Springer
,
Berlin
, pp.
287
293
10.1007/978-3-642-04068-9_17.
3.
Straughan
,
B.
, and
Harfash
,
A. J.
,
2013
, “
Instability in Poiseuille Flow in a Porous Medium With Slip Boundary Conditions
,”
Microfluidics Nanofluidics
,
15
(
1
), pp.
109
115
.10.1007/s10404-012-1131-3
4.
Bera
,
P.
, and
Khalili
,
A.
,
2006
, “
Influence of Prandtl Number on Stability of Mixed Convective Flow in a Vertical Channel Filled With a Porous Medium
,”
Phys. Fluids
,
18
(
12
), p.
124103
.10.1063/1.2405321
5.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford, UK
.
6.
Alchaar
,
S.
,
Vasseur
,
P.
, and
Bilgen
,
E.
,
1995
, “
Effect of a Magnetic Field on the Onset of Convection in a Porous Medium
,”
Heat Mass Transfer
,
30
(
4
), pp.
259
267
.10.1007/BF01602772
7.
Bhadauria
,
B. S.
,
2008
, “
Combined Effect of Temperature Modulation and Magnetic Field on the Onset of Convection in an Electrically Conducting-Fluid-Saturated Porous Medium
,”
ASME J. Heat Transfer
,
130
(
5
), p.
052601
.10.1115/1.2885871
8.
Bhatta
,
D.
,
Muddamallappa
,
M. S.
, and
Riahi
,
D. N.
,
2010
, “
On Perturbation and Marginal Stability Analysis of Magnetoconvection in Active Mushy Layer
,”
Transp. Porous Media
,
82
(
2
), pp.
385
399
.10.1007/s11242-009-9433-y
9.
Roberts
,
P. H.
,
1969
, “
Electrohydrodynamic Convection
,”
Q. J. Mech. Appl. Math.
,
22
(
2
), pp.
211
220
.10.1093/qjmam/22.2.211
10.
Takashima
,
M.
, and
Aldridge
,
K. D.
,
1976
, “
The Stability of a Horizontal Layer of Dielectric Fluid Under the Simultaneous Action of a Vertical DC Electric Field and a Vertical Temperature Gradient
,”
Q. J. Mech. Appl. Math.
,
29
(
1
), pp.
71
87
.10.1093/qjmam/29.1.71
11.
Char
,
M. I.
, and
Chiang
,
K. T.
,
1994
, “
Boundary Effects on the Bénard–Marangoni Instability Under an Electric Field
,”
Appl. Sci. Res.
,
52
(
4
), pp.
331
354
.10.1007/BF00936836
12.
Shivakumara
,
I. S.
,
Nagashree
,
M. S.
, and
Hemalatha
,
K.
,
2007
, “
Electroconvective Instability in a Heat Generating Dielectric Fluid Layer
,”
Int. Commun. Heat Mass Transfer
,
34
(
9–10
), pp.
1041
1047
.10.1016/j.icheatmasstransfer.2007.05.006
13.
Yabe
,
A.
,
Mori
,
Y.
, and
Hijikata
,
K.
,
1996
, “
Active Heat Transfer Enhancement by Utilizing Electric Fields
,”
Annu. Rev. Heat Transfer
,
7
, pp.
193
244
.10.1615/AnnualRevHeatTransfer.v7.60
14.
Lai
,
F. C.
, and
Lai
,
K. W.
,
2002
, “
EHD-Enhanced Drying With Wire Electrode
,”
Drying Tech.
,
20
(
7
), pp.
1393
1405
.10.1081/DRT-120005858
15.
Moreno
,
R. Z.
,
Bonet
,
E. J.
, and
Trevisan
,
O. V.
,
1996
, “
Electric Alternating Current Effects on Flow of Oil and Water in Porous Media
,”
K.
Vafai
and
P. N.
Shivakumar
, eds.,
Proceedings of the International Conference on Porous Media and Their Applications in Science, Engineering and Industry
, pp.
147
172
.
16.
Rudraiah
,
N.
, and
Gayathri
,
M. S.
,
2009
, “
Effect of Thermal Modulation on the Onset of Electrothermoconvection in a Dielectric Fluid Saturated Porous Medium
,”
ASME J. Heat Transfer
,
131
(
10
), p.
101009
.10.1115/1.3180709
17.
Shivakumara
,
I. S.
,
Rudraiah
,
N.
,
Lee
,
J.
, and
Hemalatha
,
K.
,
2011
, “
The Onset of Darcy–Brinkman Electroconvection in a Dielectric Fluid Saturated Porous Layer
,”
Transp. Porous Media
,
90
(
2
), pp.
509
528
.10.1007/s11242-011-9797-7
18.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1960
,
Electrodynamics of Continuous Media
,
Pergamon Press
,
New York
.
19.
Takashima
,
M.
, and
Hamabata
,
H.
,
1984
, “
The Stability of Natural Convection in a Vertical Layer of Dielectric Fluid in the Presence of a Horizontal AC Electric Field
,”
J. Phys. Soc. Jpn.
,
53
(
5
), pp.
1728
1736
.10.1143/JPSJ.53.1728
20.
Korpela
,
S. A.
,
Gozum
,
D.
, and
Baxi
,
C. B.
,
1973
, “
On the Stability of the Conduction Regime of Natural Convection in a Vertical Slot
,”
Int. J. Heat Mass Transfer
,
16
(
9
), pp.
1683
1690
.10.1016/0017-9310(73)90161-0
21.
Bergholz
,
R. F.
,
1978
, “
Instability of Steady Natural Convection in a Vertical Fluid Layer
,”
J. Fluid Mech.
,
84
(
4
), pp.
743
768
.10.1017/S0022112078000452
22.
Nield
,
D. A.
,
Junqueira
,
S. L. M.
, and
Lage
,
J. L.
,
1996
, “
Forced Convection in a Fluid Saturated Porous Medium Channel With Isothermal or Isoflux Boundaries
,”
Proceedings of the 1st International Conference on Porous Media and Their Applications in Science, Engineering and Industry
, Kona, HI, pp.
51
70
.
23.
Givler
,
R. C.
, and
Altobelli
,
S. A.
,
1994
, “
Determination of the Effective Viscosity for the Brinkman–Forchheimer Flow Model
,”
J. Fluid Mech.
,
258
, pp.
355
361
.10.1017/S0022112094003368
You do not currently have access to this content.