A numerical simulation of forced convective condensation of propane in an upright spiral tube is presented. In the numerical simulations, the important models are used: implicit volume of fluid (VOF) multiphase model, Reynolds stress (RS) turbulence model, Lee's phase change model and Ishii's concentration model, and also the gravity and surface tension are taken into account. The mass flux and vapor quality are simulated from 150 to 350 kg·m−2·s−1 and from 0.1 to 0.9, respectively. The numerical results show that in all simulation cases, only the stratified flow, annular flow, and mist flow are observed. The heat transfer coefficient and frictional pressure drop increase with the increase of mass flux and vapor quality for all simulation cases. Under different flow patterns and mass flux, the numerical results of void fraction, heat transfer coefficient, and frictional pressure drop show good agreement with the experimental results and correlations from the existing references.

References

References
1.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renewable Sustainable Energy Rev.
,
10
(
5
), pp.
463
490
.10.1016/j.rser.2004.09.014
2.
Fernández-Seara
,
J.
, and
Uhía
,
F. J.
,
2012
, “
Heat Transfer and Friction Characteristics of Spirally Corrugated Tubes for Outer Ammonia Condensation
,”
Int. J. Refrig.
,
35
(
7
), pp.
2022
2032
.10.1016/j.ijrefrig.2012.05.021
3.
Bukasa
,
J.-P. M.
,
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2004
, “
Heat Transfer Performance During Condensation Inside Spiralled Micro-Fin Tubes
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
321
328
.10.1115/1.1737777
4.
Bukasa
,
J.-P.
,
Liebenberg
,
L.
, and
Meyerb
,
J. P.
,
2005
, “
Influence of Spiral Angle on Heat Transfer During Condensation Inside Spiralled Micro-Fin Tubes
,”
Heat Transfer Eng.
,
26
(
7
), pp.
11
21
.10.1080/01457630590959278
5.
Kang
,
H. J.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
2000
, “
Condensation of R134a Flowing Inside Helicoidal Pipe
,”
Int. J. Heat Mass Transfer
,
43
(
14
), pp.
2553
2564
.10.1016/S0017-9310(99)00296-3
6.
Han
,
J. T.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
2005
, “
Condensation Heat Transfer and Pressure Drop Characteristics of R-134a in an Annular Helical Pipe
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1307
1316
.10.1016/j.icheatmasstransfer.2005.07.009
7.
Shao
,
L.
,
Han
,
J. T.
,
Su
,
G. P.
, and
Pan
,
J. H.
,
2007
, “
Condensation Heat Transfer of R-134A in Horizontal Straight and Helically Coiled Tube-in-Tube Heat Exchangers
,”
J. Hydrodyn. Ser. B
,
19
(
6
), pp.
677
682
.10.1016/S1001-6058(08)60003-7
8.
Han
,
J. T.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
2004
, “
Condensation Heat Transfer of R-134a in Helical Pipe
,”
J. Hydrodyn. Ser. B
,
16
(
2
), pp.
144
150
.
9.
Yu
,
B.
,
Han
,
J. R.
,
Kang
,
H. J.
,
Lin
,
C. X.
,
Awwad
,
A.
, and
Ebadian
,
M. A.
,
2003
, “
Condensation Heat Transfer of R-134A Flow Inside Helical Pipes at Different Orientations
,”
Int. Commun. Heat Mass Transfer
,
30
(
6
), pp.
745
754
.10.1016/S0735-1933(03)00122-2
10.
Cherepanov
,
A. P.
,
Morozov
,
V. P.
, and
Zakharov
,
N. D.
,
1992
, “
Heat Transfer During Condensation of a Mixture in Spiral Capillary Tubes
,”
Chem. Pet. Eng.
,
28
(
7
), pp.
432
435
.10.1007/BF01369964
11.
Boyko
,
L. D.
, and
Kruzhilin
,
G. N.
,
1967
, “
Heat Transfer and Hydraulic Resistance During Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes
,”
Int. Heat Mass Transfer
,
10
(
3
), pp.
361
373
.10.1016/0017-9310(67)90152-4
12.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2005
, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1096
1105
.10.1115/1.2033905
13.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2009
, “
Film Condensation in Horizontal Circular-Section Microchannels
,”
Int. J. Eng. Syst. Model. Simul.
,
1
(
2–3
), pp.
115
121
.10.1504/IJESMS.2009.027575
14.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans all Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
91
92
.
15.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
16.
Nichols
,
B. D.
,
Hirt
,
C. W.
, and
Hotchkiss
,
R. S.
,
1980
, “
SOLA-VOF: A Solution Algorithm for Transient Fluid Flow With Multiple Free Boundaries
,” Los Alamos National Laboratory, Technical Report No. LA-8355.
17.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M. B.
,
2001
, “
Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
501
511
.10.1115/1.1351808
18.
Da Riva
,
E.
, and
Del Col
,
D.
,
2011
, “
Effect of Gravity During Condensation of R134a in a Circular Minichannel
,”
Microgravity Sci. Technol.
,
23
(
1
), pp.
87
97
.10.1007/s12217-011-9275-4
19.
Da Riva
,
E.
,
Del Col
,
D.
,
Garimella
,
S. V.
, and
Cavallini
,
A.
,
2012
, “
The Importance of Turbulence During Condensation in a Horizontal Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3470
3481
.10.1016/j.ijheatmasstransfer.2012.02.026
20.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
21.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure: Present… and Future?
,”
Heat Fluid Flow
,
10
(
4
), pp.
282
300
.10.1016/0142-727X(89)90017-9
22.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
23.
Neeraas
,
B. O.
,
1993
, “
Condensation of Hydrocarbon Mixtures in Ciol-Wound LNG Heat Exchangers Tube-Side Heat Transfer and Pressure Drop
,” Doktor, The Norwegian Institute of Technology, Trondheim, Norway, pp.
92
100
.
24.
NIST
,
2007
,
REFPROP 8
,
National Institute of Standard and Technology
,
Boulder, CO
.
25.
Boeck
,
T.
,
Li
,
J.
,
López-Pagés
,
E.
,
Yecko
,
P.
, and
Zaleski
,
S.
,
2007
, “
Ligament Formation in Sheared Liquid-Gas Layers
,”
Theor. Comput. Fluid Dyn.
,
21
(
1
), pp.
59
76
.10.1007/s00162-006-0022-1
26.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
27.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
28.
Lee
,
W. H.
,
1980
, “
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,”
Multiphase Transport: Fundamentals, Reactor Safety, Applications
,
Verizoglu
,
T. N.
, ed.,
Hemisphere Publishing
,
Washington, DC
.
29.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Heat Mass Transfer
,
51
(
5–6
), pp.
1003
1016
.10.1016/j.ijheatmasstransfer.2007.05.025
30.
Da Riva
,
E.
, and
Del Col
,
D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051019
.10.1115/1.4005710
31.
Ishii
,
M.
, and
Mishima
,
K.
,
1989
, “
Droplet Entrainment Correlation in Annular Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1835
1846
.10.1016/0017-9310(89)90155-5
32.
Hajal
,
J. E.
,
Thome
,
J. R.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3349
3363
.10.1016/S0017-9310(03)00139-X
33.
Ananiev
,
E. P.
,
Boyko
,
L. D.
, and
Kruzhilin
,
G. N.
,
1961
, “
Heat Transfer in the Presence of Steam Condensation in a Horizontal Tube
,”
International Heat Transfer Conference
, Part 2, pp.
290
295
.
34.
Fuchs
,
P. H.
,
1975
, “
Pressure Drop and Heat Transfer During Flow of Evaporating Liquid in Horizontal Tubes and Bends
,” Ph.D Thesis, NTH, Trondheim, Norway.
35.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051701
.10.1115/1.4003080
36.
Fasquelle
,
A.
,
Pelle
,
J.
,
Harmand
,
S.
, and
Shevchuk
,
I. V.
,
2014
, “
Numerical Study of Convective Heat Transfer Enhancement in a Pipe Rotating Around a Parallel Axis
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051901
.10.1115/1.4025642
You do not currently have access to this content.