Pool boiling experiments are performed to investigate potential enhancement of critical heat flux (CHF) of PF-5060 dielectric liquid on microporous copper (MPC) surfaces and the effect of surface inclination angle. The morphology and microstructure of the MPC surfaces change with thickness. The experiments tested seven 10 × 10 mm MPC surfaces with thicknesses from 80 to 230 μm at inclination angles of 0 deg (upward facing), 60 deg, 90 deg (vertical), 120 deg, 150 deg, 160 deg, 170 deg, and 180 deg (downward facing). CHF increases as the thickness of the surface increases and/or the inclination angle decreases. The values in the upward facing orientation are 36–59% higher than on smooth Cu. For all surfaces, CHF values in the downward facing orientation are approximately 28% of those in the upward facing orientation. A developed CHF correlation, similar to those of Zuber and Kutateladze, accounts for the effects of inclination angle and thickness of the MPC surfaces. It is in good agreement with experimental data to within ±8%. Still photographs of nucleate boiling on the MPC surfaces at different inclinations help the interpretation of the experimental results.

References

References
1.
El–Genk
,
M. S.
, and
Bostanci
,
H.
,
2003
, “
Saturation Boiling of HFE–7100 From a Copper Surface Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1841
1854
.10.1016/S0017-9310(02)00489-1
2.
3M, Inc.,
2013
, “
Technical Data Sheet
,” http://www.scribd.com/doc/49620688/data-sheet-PF-5060
3.
Priarone
,
A.
,
2005
, “
Effect of Surface Orientation on Nucleate Boiling and Critical Heat Flux of Dielectric Fluids
,”
J. Therm. Sci.
,
44
(
9
), pp.
822
831
.10.1016/j.ijthermalsci.2005.02.014
4.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling on Micro-Porous Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
118
(
4
), pp.
937
943
.10.1115/1.2822592
5.
O'Connor
,
J.
,
You
,
S.
, and
Chang
,
J.
,
1996
, “
Gas–Saturated Pool Boiling Heat Transfer From Smooth and Microporous Surfaces in FC–72
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
662
667
10.1115/1.2822683
6.
Jung
,
J.-Y.
, and
Kwak
,
H.-Y.
,
2006
, “
Effect of Surface Condition on Boiling Heat Transfer From Silicon Chip With Submicron-Scale Roughness
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4543
4551
.10.1016/j.ijheatmasstransfer.2006.03.045
7.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2005
, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3736
3752
.10.1016/j.ijheatmasstransfer.2005.03.011
8.
Reed
,
S. J.
, and
Mudawar
,
I.
,
1997
, “
I. Enhancement of Boiling Heat Transfer Using Highly Wetting Liquids With Pressed on Fins at Low Contact Forces
,”
Int. J. Heat Mass Transfer
,
40
(
10
) pp.
2379
2392
.10.1016/S0017-9310(96)00286-4
9.
Rainey
,
K. N.
, and
You
,
S. M.
,
2001
, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer From Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2589
2599
.10.1016/S0017-9310(00)00318-5
10.
Jiang
,
Y. Y.
,
Wang
,
W. C.
,
Wang
,
D.
, and
Wang
,
B. X.
,
2001
, “
Boiling Heat Transfer on Machined Porous Surfaces With Structured Optimization
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
443
456
.10.1016/S0017-9310(00)00057-0
11.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
,
2002
, “
Enhanced Boiling of FC–72 on Silicon Chips With Micro–Pin–Fins and Submicron Scale Roughness
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
383
390
.10.1115/1.1447937
12.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2008
, “
Nucleate Boiling of FC-72 and HFE-7100 on Porous Graphite at Different Orientations and Liquid Subcooling
,”
Energy Convers. Manage.
,
49
(
4
), pp.
733
750
.10.1016/j.enconman.2007.07.028
13.
Vemuri
,
S.
, and
Kim
,
K. J.
,
2005
, “
Pool Boiling of Saturated FC-72 on Nano-Porous Surface
,”
Int. Commun. Heat Mass Transfer
,
32
(
1–2
), pp.
27
31
.10.1016/j.icheatmasstransfer.2004.03.020
14.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Gao
,
A.
, and
Ajayan
,
P. M.
,
2006
, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
,
37
(
11
), pp.
1158
1164
.10.1016/j.mejo.2005.07.016
15.
Nimkar
,
N. K.
,
Bhavnani
,
S. H.
, and
Jaeger
,
R. C.
,
2006
, “
Benchmark Heat Transfer Date for Microstructured Surfaces for Immersion-Cooled Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
1
), pp.
89
97
.10.1109/TCAPT.2005.850536
16.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
,
2007
, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
997
1009
.10.1016/j.ijheatmasstransfer.2006.08.005
17.
Kim
,
Y.-H.
,
Lee
,
K.-J.
, and
Han
,
D.
,
2008
, “
Pool Boiling Enhancement With Surface Treatments
,”
J. Heat Mass Transfer
,
45
(
1
), pp.
55
60
.10.1007/s00231-008-0402-8
18.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2009
, “
Saturation Boiling of Dielectric Liquids From Extended Surfaces at Different Orientations
,”
J. Enhanced Heat Transfer
,
16
(
2
), pp.
103
122
.10.1615/JEnhHeatTransf.v16.i2.20
19.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
20.
El-Genk
,
M. S.
,
2012
, “
Nucleate Boiling Enhancements on Porous Graphite and Micro-Porous and Macro-Finned Copper Surfaces
,”
ASME J. Heat Transfer Eng.
,
33
(
3
), pp.
175
204
.10.1080/01457632.2011.589305
21.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.10.1115/1.2759969
22.
Furbery
,
R.
, and
Palm
,
B.
,
2011
, “
Boiling Heat Transfer on a Dendritic and Micro-Porous Surface in R134a and Fc-72
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3595
3603
.10.1016/j.applthermaleng.2011.07.027
23.
Ji
,
X.
,
Xu
,
J.
,
Zhao
,
Z.
, and
Yang
,
W.
,
2013
, “
Pool Boiling Heat Transfer on Uniform and Non-Uniform Porous Coating Surfaces
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
198
212
.10.1016/j.expthermflusci.2013.03.002
24.
Howard
,
A. H.
, and
Mudawar
,
I.
,
1999
, “
Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1665
1688
.10.1016/S0017-9310(98)00233-6
25.
El–Genk
,
M. S.
, and
Parker
,
J. L.
,
2005
, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2455
2481
.10.1016/j.enconman.2004.11.012
26.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2011
, “
Subcooled Boiling of PF-5060 Dielectric Liquid on Microporous Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081503
.10.1115/1.4003748
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1952
, “
Describing Uncertainties in Single-Sample Experiments
”,
ASME Mech. Eng.
,
75
, pp.
3
8
.
28.
El-Genk
,
M. S.
, and
Suszko
,
A.
,
2014
, “
Saturation Nucleate Boiling and Correlations for PF-5060 Dielectric Liquid on Inclined Rough Copper Surfaces
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081503
.10.1115/1.4027365
29.
Kutateladze
,
S. S.
,
1952
, “
Heat Transfer in Condensation and Boiling
,”
U.S. Atomic Energy Commission, Technical Report No. AEC-tr-3770.
30.
Kutateladze
,
S. S.
,
1961
, “
Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
4
, pp.
31
45
.10.1016/0017-9310(61)90059-X
31.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. dissertation,
University of California, Ramo-Wooldridge Corp.
,
Los Angeles
, CA, Technical Report No. AECU-4439.
32.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
, “
Hydrodynamic Prediction of the Peak Pool-Boiling Heat Fluxes for Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
152
158
.10.1115/1.3450013
33.
El-Genk
,
M. S.
, and
Guo
,
Z.
,
1993
, “
Transient Boiling From Inclined and Downward Facing Surfaces in a Saturated Pool
,”
Int. J. Refrig.
,
16
(
3
), pp.
414
422
.10.1016/0140-7007(93)90058-G
You do not currently have access to this content.