A simple thermostat based on self-propelled Leidenfrost droplets is proposed and demonstrated. The proof-of-principle device sits on a heated hotplate, which provides the heat, but under dripping water which cools it. Using temperature dependent directionality of droplets on a substructured sawteeth surface, droplets are either discarded or fed into a region with high Leidenfrost temperature and enhanced heat-loss. The system can therefore adjust how much of the droplets’ cooling power it uses depending on its own temperature, and this feedback enables it to maintain a constant set temperature and act as a thermostat.

References

References
1.
Leidenfrost
,
J. G.
,
1756
, “
De Aquae Communis Nonnullis Qualitatibus Tractatus, on the Fixation of Water in Diverse Fire
,”
Int. J. Heat Mass Transfer
,
9
(11), p.
1153
[Translated by Wares, C.,
1966
].10.1016/0017-9310(66)90111-6
2.
Vakarelski
,
I. U.
,
Patankar
,
N. A.
,
Marston
,
J. O.
,
Chan
,
D. Y. C.
, and
Thoroddsen
,
S. T.
,
2012
, “
Stabilization of Leidenfrost Vapour Layer by Textured Superhydrophobic Surface
,”
Nature
,
489
(7415), pp.
274
277
.10.1038/nature11418
3.
Abdelaziz
,
R.
,
Disci-Zayed
,
D.
,
Hedayati
,
M. K.
,
Pöhls
,
J. H.
,
Zillohu
,
A. U.
,
Erkartal
,
B.
,
Charkravadhanula
,
V. S. K.
,
Duppel
,
V.
,
Kienle
,
L.
, and
Elbahri
,
M.
,
2013
, “
Green Chemistry and Nanofabrication in a Levitated Leidenfrost Drop
,”
Nat. Commun.
,
4
, p.
2400
.10.1038/ncomms3400
4.
Nukiyama
,
S.
,
1934
, “
The Maximum and Minimum Values of the Heat Q Transmitted From a Metal to Boiling Water Under Atmospheric Pressure
,”
J. Jpn. Soc. Mech. Eng.
,
37
,p.
367
[English Translation by Lee, C. J., 1966, Int. J. Heat Mass Transfer, 9(12), pp. 1419–1433].
5.
Kwon
,
H. M.
,
Bird
,
J. C.
, and
Varanasi
,
K.
,
2013
, “
Increasing the Leidenfrost Point using Micro-Nano Hierarchical Surface Structures
,”
Appl. Phys. Lett.
,
103
(20), p.
201601
.10.1063/1.4828673
6.
Quéré
,
D.
,
2013
, “
Leidenfrost Dynamics
,”
Annu. Rev. Fluid Mech.
,
45
, p.
197
.10.1146/annurev-fluid-011212-140709
7.
Linke
,
H.
,
Aleman
,
B. J.
,
Melling
,
L. D.
,
Taormina
,
M. J.
,
Francis
,
M. J.
,
Dow-Hygelund
,
C. C.
,
Narayanan
,
V.
,
Taylor
,
R. P.
, and
Stout
,
A.
,
2006
, “
Self-Propelled Leidenfrost Droplets
,”
Phys. Rev. Lett.
,
96
(15), p.
154502
.10.1103/PhysRevLett.96.154502
8.
Grounds
,
A.
,
Still
,
R.
, and
Takashina
,
K.
,
2012
, “
Enhanced Droplet Control by Transition Boiling
,”
Sci. Rep.
,
2
, p.
720
.10.1038/srep00720
9.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
894
903
.10.1115/1.2826080
10.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2002
, “
A Cavity Activation and Bubble Growthmodel of the Leidenfrost Point
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
864
874
.10.1115/1.1470487
11.
Dupeux
,
G.
,
Le Merrer
,
M.
,
Lagubeau
,
G.
,
Clanet
,
C.
,
Hardt
,
S.
, and
Quéré
,
D.
,
2011
, “
Viscous Mechanism for Leidenfrost Propulsion on a Ratchet
,”
EPL
,
96
(5), p.
58001
.10.1209/0295-5075/96/58001
12.
Baier
,
T.
,
Dupeux
,
G.
,
Herbert
,
S.
,
Hardt
,
S.
, and
Quéré
,
D.
,
2013
, “
Propulsion Mechanisms for Leidenfrost Solids on Ratchets
,”
Phys. Rev. E
,
87R
(2), p.
021001
.10.1103/PhysRevE.87.021001
You do not currently have access to this content.