Finite element analysis has been employed to investigate the effect of carbon nanotubes (CNTs) distribution on the thermal conductivity of composite materials. Several kinds of representative volume elements (RVEs) employed in this study are made by assuming that unidirectional CNTs are randomly distributed in a polymer matrix. It is also assumed that each set of RVEs contains a constant fiber volume fraction and aspect ratio. Results show that randomness—the way in which fibers are distributed inside the matrix—has a significant effect on the thermal conductivity of CNT composites. Results of this study were compared using the analytical Xue and Nan model and good agreement was observed.

References

References
1.
Zhou
,
T.
,
Wang
,
X.
,
Liu
,
X.
, and
Xiong
,
D.
,
2010
, “
Improved Thermal Conductivity of Epoxy Composites Using a Hybrid Multi-Walled Carbon Nanotube/Micro-SiC Filler
,”
Carbon
,
48
(
4
), pp.
1171
1176
.10.1016/j.carbon.2009.11.040
2.
Chung
,
D. D. L.
,
2001
, “
Materials for Thermal Conduction
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1593
1605
.10.1016/S1359-4311(01)00042-4
3.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.10.1016/j.progpolymsci.2010.11.004
4.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tománek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
, pp.
4613
4616
.10.1103/PhysRevLett.84.4613
5.
Liang
,
Q.
,
Moon
,
K. S.
,
Jiang
,
H.
, and
Wong
,
C. P.
,
2012
, “
Thermal Conductivity Enhancement of Epoxy Composites by Interfacial Covalent Bonding for Underfill and Thermal Interfacial Materials in Cu/Low-K Application
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
10
), pp.
1571
1579
.10.1109/TCPMT.2012.2204885
6.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Winey
,
K. I.
, and
Fischer
,
J. E.
,
2007
, “
Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1096
1099
.10.1115/1.2737484
7.
Hong
,
W. T.
, and
Tai
,
N. H.
,
2008
, “
Investigations on the Thermal Conductivity of Composites Reinforced With Carbon Nanotubes
,”
Diamond Relat. Mater.
,
17
(
7–10
), pp.
1577
1581
.10.1016/j.diamond.2008.03.037
8.
Yang
,
S. Y.
,
Ma
,
C. C. M.
,
Teng
,
C. C.
,
Huang
,
Y. W.
,
Liao
,
S. H.
,
Huang
,
Y. L.
,
Tien
,
H. W.
,
Lee
,
T. M.
, and
Chiou
,
K. C.
,
2010
, “
Effect of Functionalized Carbon Nanotubes on the Thermal Conductivity of Epoxy Composites
,”
Carbon
,
48
(
3
), pp.
592
603
.10.1016/j.carbon.2009.08.047
9.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
,
2004
, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon Nanotube Composites
,”
J. Appl. Phys.
,
95
(
12
), pp.
8136
8144
.10.1063/1.1736328
10.
Xue
,
Q. Z.
,
2006
, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
,
17
, pp.
1655
1660
.10.1088/0957-4484/17/6/020
11.
Afrooz
,
I. E.
,
Öchsner
,
A.
, and
Rahmandoust
,
M.
,
2012
, “
Effects of the Carbon Nanotube Distribution on the Macroscopic Stiffness of Composite Materials
,”
Comput. Mater. Sci.
,
51
, pp.
422
429
.
12.
Progelhof
,
R. C.
,
Throne
,
J. L.
, and
Ruetsch
,
R. R.
,
1976
, “
Methods for Predicting the Thermal Conductivity of Composite Systems: A Review
,”
Polym. Eng. Sci.
,
16
, pp.
615
625
.
13.
Tavman
,
I. H.
,
1998
, “
Effective Thermal Conductivity of Isotropic Polymer Composites
,”
Int. Commun. Heat Mass Transfer
,
25
(
5
), pp.
723
732
.10.1016/S0735-1933(98)00059-1
14.
Halpin
,
J. C.
,
1969
, “
Stiffness and Expansion Estimates for Oriented Short Fiber Composites
,”
J. Compos. Mater.
,
3
, pp.
732
735
.
15.
Lewis
,
T.
, and
Nielsen
,
L.
,
1970
, “
Dynamic Mechanical Properties of Particulate-Filled Polymers
,”
J. Appl. Polym. Sci.
,
14
(
6
), pp.
1449
1471
.10.1002/app.1970.070140604
16.
Xu
,
Y.
,
Ray
,
G.
, and
Abdel-Magid
,
B.
,
2006
, “
Thermal Behavior of Single-Walled Carbon Nanotube Polymer–Matrix Composites
,”
Composites, Part A
,
37
, pp.
114
121
.
17.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Oxford University
,
Cambridge, MA
, pp.
435
441
.
18.
Xue
,
Q. Z.
,
2005
, “
Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Physica B
,
368
(
1–4
), pp.
302
307
.10.1016/j.physb.2005.07.024
19.
msc.marc R1,
2007
, Help, Volume B, Element Library.
20.
Fiedler
,
T.
,
Solórzano
,
E.
, and
Öchsner
,
A.
,
2008
, “
Numerical and Experimental Analysis of the Thermal Conductivity of Metallic Hollow Sphere Structures
,”
Mater. Lett.
,
62
(
8–9
), pp.
1204
1207
.10.1016/j.matlet.2007.08.050
21.
Che
,
J.
,
Çağin
,
T.
, and
Goddard
,
W. A.
, III
,
2000
, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
11
(
2
), pp.
65
69
.10.1088/0957-4484/11/2/305
22.
Nan
,
C. W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.10.1063/1.1808874
23.
Bryning
,
M. B.
,
Milkie
,
D. E.
,
Islam
,
M. F.
,
Kikkawa
,
J. M.
, and
Yodh
,
A. G.
,
2005
, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
87
(
16
), p.
161909
.10.1063/1.2103398
24.
Li
,
X.
,
Fan
,
X.
,
Zhu
,
Y.
,
Li
,
J.
,
Adams
,
J. M.
,
Shen
,
S.
, and
Li
,
H.
,
2012
, “
Computational Modeling and Evaluation of the Thermal Behavior of Randomly Distributed Single-Walled Carbon Nanotube/Polymer Composites
,”
Comput. Mater. Sci.
,
63
, pp.
207
213
.10.1016/j.commatsci.2012.06.034
You do not currently have access to this content.