In the present study, the transient, free convective, boundary layer flow of a couple stress fluid flowing over a vertical cylinder is investigated, and the heat and mass functions for the final steady-state of the present flow are developed. The solution of the time dependent nonlinear and coupled governing equations is obtained with the aid of an unconditionally stable Crank–Nicolson type of numerical scheme. Numerical results for the time histories of the skin-friction coefficient, Nusselt number, and Sherwood number as well as the steady-state velocity, temperature, and concentration are presented graphically and discussed. Also, it is observed that time required for the flow variables to reach the steady-state increases with the increasing values of Schmidt and Prandtl numbers, while the opposite trend is observed with respect to the buoyancy ratio parameter. To analyze the flow variables in the steady-state, the heatlines and masslines are used in addition to streamlines, isotherms, and isoconcentration lines. When the heat and mass functions are properly made dimensionless, its dimensionless values are related to the local and overall Nusselt and Sherwood numbers. Boundary layer flow visualization indicates that the heatlines and masslines are dense in the vicinity of the hot wall, especially near the leading edge.

References

References
1.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1956
, “
Laminar Free Convection Heat Transfer From the Outer Surface of a Vertical Circular Cylinder
,”
ASME J. Heat Transfer
,
78
(
8
), pp.
1823
1829
.
2.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
1974
, “
Local Nonsimilar Solutions for Natural Convection on a Vertical Cylinder
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
178
183
.10.1115/1.3450161
3.
Fujii
,
T.
, and
Uehara
,
H.
,
1970
, “
Laminar Natural Convective Heat Transfer From the Outer Surface of a Vertical Cylinder
,”
Int. J. Heat Mass Transfer
,
13
(
3
), pp.
607
615
.10.1016/0017-9310(70)90125-0
4.
Lee
,
H. R.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Natural Convection Along Slender Vertical Cylinders With Variable Surface Temperature
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
103
108
.10.1115/1.3250439
5.
Bottemanne
,
F. A.
,
1972
, “
Experimental Results of Pure and Simultaneous Heat and Mass Transfer by Free Convection About a Vertical Cylinder for Pr = 0.71 and Sc = 0.63
,”
Appl. Sci. Res.
,
25
(
1
), pp.
372
382
.10.1007/BF00382310
6.
Chen
,
T. S.
, and
Yuh
,
C. F.
,
1980
, “
Combined Heat and Mass Transfer in Natural Convection Along a Vertical Cylinder
,”
Int. J. Heat Mass Transfer
,
23
(
4
), pp.
451
461
.10.1016/0017-9310(80)90087-3
7.
Gebhart
,
B.
, and
Pera
,
L.
,
1971
, “
The Nature of Vertical Natural Convection Flows Resulting From the Combined Buoyancy Effects of Thermal and Mass Diffusion
,”
Int. J. Heat Mass Transfer
,
14
(
12
), pp.
2025
2050
.10.1016/0017-9310(71)90026-3
8.
Dring
,
R. P.
, and
Gebhart
,
B.
,
1966
, “
Transient Natural Convection From Thin Vertical Cylinders
,”
ASME J. Heat Transfer
,
88
(
2
), pp.
246
247
.10.1115/1.3691522
9.
Evan
,
L. B.
,
Reid
,
R. C.
, and
Drake
,
E. M.
,
1968
, “
Transient Natural Convection in a Vertical Cylinder
,”
AIChE J.
,
14
(
2
), pp.
251
261
.10.1002/aic.690140210
10.
Rani
,
H. P.
, and
Kim
,
C. N.
,
2009
, “
A Numerical Study of the Dufour and Soret Effects on Unsteady Natural Convection Flow Past an Isothermal Vertical Cylinder
,”
Korean J. Chem. Eng.
,
26
(
4
), pp.
946
954
.10.1007/s11814-009-0158-y
11.
Eringen
,
A. C.
,
1966
, “
Theory of Micropolar Fluids
,”
J. Math. Mech.
,
16
(
1
), pp.
1
18
.10.1512/iumj.1967.16.16001
12.
Stokes
, V
. K.
,
1966
, “
Couple Stress in Fluids
,”
Phys. Fluids
,
9
(
9
), pp.
1709
1715
.10.1063/1.1761925
13.
Chu
,
H. M.
,
Li
,
W. L.
, and
Hu
,
S. Y.
,
2006
, “
Effects of Couple Stresses on Pure Squeeze EHL Motion of Circular Contacts
,”
J. Mech.
22
(
1
), pp.
77
84
.10.1017/S1727719100000800
14.
Lin
,
J.
,
1998
, “
Squeeze Film Characteristics of Finite Journal Bearings: Couple Stress Fluid Model
,”
Tribol. Int.
,
31
(
4
), pp.
201
207
.10.1016/S0301-679X(98)00022-X
15.
Naduvinamani
,
N. B.
, and
Patil
,
S. B.
,
2009
, “
Numerical Solution of Finite Modified Reynolds Equation for Couple Stress Squeeze Film Lubrication of Porous Journal Bearings
,”
Comput. Struct.
,
87
(
21
), pp.
1287
1295
.10.1016/j.compstruc.2009.08.004
16.
Chang-Jian
,
C.
,
Yau
,
H.
, and
Chen
,
J.
,
2010
, “
Nonlinear Dynamic Analysis of a Hybrid Squeeze-Film Damper-Mounted Rigid Rotor Lubricated With Couple Stress Fluid and Active Control
,”
Appl. Math. Modell.
,
34
(
9
), pp.
2493
2507
.10.1016/j.apm.2009.11.014
17.
Srivastava
, V
. P.
,
2003
, “
Flow of a Couple Stress Fluid Representing Blood Through Stenotic Vessels With a Peripheral Layer
,”
Indian J. Pure Appl. Math.
,
34
(
12
), pp.
1727
1740
.
18.
Srivastava
,
L. M.
,
1986
, “
Peristaltic Transport of a Couple Stress Fluid
,”
Rheol. Acta
,
25
(
6
), pp.
638
641
.10.1007/BF01358172
19.
Umavathi
,
J. C.
, and
Malashetty
,
M. S.
,
1999
, “
Oberbeck Convection Flow of a Couple Stress Fluid Through a Vertical Porous Stratum
,”
Int. J. Non-Linear Mech.
,
34
(
6
), pp.
1037
1045
.10.1016/S0020-7462(98)00074-2
20.
Habtu
,
A.
, and
Radhakrishnamacharya
,
G.
,
2010
, “
Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid Through a Porous Medium With Slip Condition
,”
Int. J. Chem. Biol. Eng.
,
3
(
4
), pp.
205
210
.
21.
Tasawar
,
H.
,
Muhammad
,
A.
,
Ambreen
,
S.
, and
Hendi
,
Awatif A.
,
2012
, “
Unsteady Three Dimensional Flow of Couple Stress Fluid Over a Stretching Surface With Chemical Reaction
,”
Nonlinear Anal.
,
17
(
1
), pp.
47
59
.
22.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The Heatline Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer
,
105
(
4
), pp.
916
919
.10.1115/1.3245684
23.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
1st ed.
,
Wiley
,
New York
, pp.
22
, 23, 450, and 452.
24.
Trevisan
,
O. V.
, and
Bejan
,
A.
,
1987
, “
Combined Heat and Mass Transfer by Natural Convection in a Vertical Enclosure
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
104
112
.10.1115/1.3248027
25.
Costa
, V
. A. F.
,
2000
, “
Heatline and Massline Visualization of Laminar Natural Convection Boundary Layers Near a Vertical Wall
,”
Int. J. Heat Mass Transfer
,
43
(
20
), pp.
3765
3774
.10.1016/S0017-9310(00)00028-4
26.
Costa
, V
. A. F.
,
2006
, “
Bejan’s Heatlines and Masslines for Convection Visualization and Analysis
,”
ASME Appl. Mech. Rev.
,
59
(
3
), pp.
126
145
.10.1115/1.2177684
27.
Aggarwal
,
S. K.
, and
Manhapra
,
A.
,
1989
, “
Use of Heatlines for Unsteady Buoyancy-Driven Flow in a Cylindrical Enclosure
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
576
578
.10.1115/1.3250719
28.
Aggarwal
,
S. K.
, and
Manhapra
,
A.
,
1989
, “
Transient Natural Convection in a Cylindrical Enclosure Nonuniformly Heated at the Top Wall
,”
Numer. Heat Transfer, Part A
,
15
(
3
), pp.
341
356
.10.1080/10407788908944692
29.
Mukhopadhyay
,
A.
,
Qin
,
X.
,
Aggarwal
,
S. K.
, and
Puri
,
I. K.
,
2002
, “
On Extension of Heatline and Massline Concepts to Reacting Flows Through Use of Conserved Scalars
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
791
799
.10.1115/1.1473139
30.
Basak
,
T.
,
Singh
,
A. K.
,
Richard
,
R.
, and
Roy
,
S.
,
2013
, “
Finite Element Simulation With Heatlines and Entropy Generation Minimization During Natural Convection Within Porous Tilted Square Cavities
,”
Ind. Eng. Chem. Res.
,
52
(
23
), pp.
8046
8061
.10.1021/ie4005755
31.
Singh
,
C.
,
1982
, “
Lubrication Theory for Couple Stress Fluids and Its Applications to Short Bearing
,”
Wear
,
88
(
3
), pp.
281
290
.10.1016/0043-1648(82)90256-3
32.
Stokes
,
V. K.
,
1984
,
Theories of Fluids With Microstructure
,
Springer-Verlag
,
New York
.
33.
Ganesan
,
P.
, and
Rani
,
H. P.
,
1998
, “
Transient Natural Convection Along Vertical Cylinder With Heat and Mass Transfer
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
449
455
.10.1007/s002310050214
You do not currently have access to this content.