The present experimental investigation considers a full coverage film cooling arrangement with different streamwise static pressure gradients. The film cooling holes in adjacent streamwise rows are staggered with respect to each other, with sharp edges and streamwise inclination angles of 20 deg with respect to the liner surface. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (BRs) (at the test section entrance) of 2.0, 5.0, and 10.0, a coolant Reynolds number of 12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 18 and 5, respectively. Data illustrating the effects of contraction ratio, BR, and streamwise location on local, line-averaged, and spatially averaged adiabatic film effectiveness data; and on local, line-averaged and spatially averaged heat transfer coefficient data are presented. Varying BR values are present along the length of the contraction passage, which contains the cooling hole arrangement, when contraction ratio is 4. Dependence on BR indicates important influences of coolant concentration and distribution. For example, line-averaged and spatially averaged adiabatic effectiveness data show vastly different changes with BR for the configurations with contraction ratios of 1 and 4. In addition, much larger effectiveness alterations are present as BR changes from 2.0 to 10.0, when significant acceleration is present and Cr = 4 (in comparison with the Cr = 1 data).

References

References
1.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(1), pp.
101
108
.10.1115/1.3446430
2.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(2), pp.
518
526
.10.1115/1.2720492
3.
Ligrani
,
P. M.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2012
, “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios
,”
ASME J. Turbomach.
,
134
(
6
), p.
061039
.10.1115/1.4006304
4.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients,”
Int. J. Heat Fluid Flow,
21
(
2
), pp.
145
155
.10.1016/S0142-727X(99)00076-4
5.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(5), pp.
758
765
.10.1115/1.1371778
6.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(4), pp.
749
757
.10.1115/1.1387245
7.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling from Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.10.1115/1.521484
8.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Row of Round Holes at Various Streamwise Angles in a Crossflow: Part I. Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.10.1016/j.ijheatmasstransfer.2005.05.019
9.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2006
, “
Effect of unheated Starting Lengths on Film Cooling Experiments
,”
ASME J. Turbomach.
,
128
(3), pp.
579
588
.10.1115/1.2184355
10.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(2), pp.
237
246
.10.1115/1.1731395
11.
Waye
,
S.
, and
Bogard
,
D.
,
2007
, “
High-Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME J. Turbomach.
,
129
(2), pp.
294
303
.10.1115/1.2464141
12.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
,
Lucas
,
T.
, and
E.
Vlasic
,
2010
, “
Aerodynamic Performance of Suction-Side Gill-Region Film Cooling
,”
ASME J. Turbomach.
,
132
(
3
), p.
031020
.10.1115/1.3151603
13.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
, and
Lucas
,
T.
,
2010
, “
Suction-Side Gill-Region Film Cooling: Effects of Hole Shape and Orientation on Adiabatic Effectiveness and Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
132
(
3
), p.
031022
.10.1115/1.3151600
14.
Mayle
,
R. E.
, and
Camarata
,
E. J.
,
1975
, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
534
538
.10.1115/1.3450424
15.
Leger
,
B.
,
Miron
,
P.
, and
Emidio
,
J. M.
,
2002
, “
Geometric and Aero-Thermal Influences on Multiholed Plate Temperature: Application on Combustor Wall
,”
Int. J. Heat Mass Transfer
,
46
(7), pp.
1215
1222
.10.1016/S0017-9310(02)00396-4
16.
Lin
,
Y.
,
Song
,
B.
,
Li
,
B.
,
Liu
,
G.
, and
Wu
,
Z.
,
2003
, “
Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements
,”
ASME
Paper No. GT-2003-38881.10.1115/GT2003-38881
17.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. New York Acad. Sci.
,
934
(1), pp.
135
146
.10.1111/j.1749-6632.2001.tb05848.x
18.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2002
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
5
), pp.
994
1002
.10.1115/1.1615256
19.
Amano
,
R. S.
,
2008
, “
Advances in Gas Turbine Blade Cooling Technology
,”
Advanced Computational Methods and Experiments in Heat Transfer X
,
B.
Sunden
, and
C. A.
Brebbia
, eds.,
WIT Press
,
Southampton
, UK.10.2495/HT080141
20.
Bunker
,
R. S.
,
2008
, “
Innovative Gas Turbine Cooling Techniques
,”
Thermal Engineering in Power Systems
,
R. S.
Amano
, and
B.
Sunden
, eds.,
WIT Press
,
Southampton, UK
.10.2495/978-1-84564-062-0/07
21.
Roach
,
P. E.
,
1986
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
22.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(1), pp.
43
51
.10.1115/1.2098788
23.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.10.1115/1.2752188
24.
O’Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
) p.
021028
.10.1115/1.4001236
25.
Anthony
,
R. J.
,
Oldfiend
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
1999
, “
Development of High-Density Arrays of Thin Film Heat Transfer Gauges
,”
JSME Thermal Engineering Joint Conference
, San Diego, CA, No. AJTE99-6159.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,” Mech. Eng.
,
75
, pp.
3
8
.
27.
Moffat
,
R. J.
,
1988
, “
"Describing the Uncertainties in Experimental Results
,” Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
28.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(4), pp.
781
787
.10.1115/1.1397306
29.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1995
, “
Pressure Gradient Effects on Film Cooling
,”
ASME
Paper No. 95-GT-18.
You do not currently have access to this content.