An experimental and numerical study was conducted to investigate the effects of dimple shapes on the heat transfer and flow friction of a turbulent flow over dimpled surfaces with different dimple shapes: spherical, teardrop, elliptical, and inclined elliptical. These dimples all have the same depth. The heat transfer, friction factor, and flow structure characteristics in the cooling channels with dimples of different shapes have been obtained and compared with each other for a Reynolds number range of 8500–60,000. The study showed that the dimple shape can have distinctive effects on the heat transfer and flow structure in the dimpled channels. The teardrop dimples show the highest heat transfer, which is about 18% higher than the conventional spherical dimples; and the elliptical dimples have the lowest heat transfer, which is about 10% lower than the spherical dimples; and however the inclined elliptical dimples have comparable heat transfer and pressure loss performance with the spherical dimples. The experiments still showed the realistic heat transfer enhancement capabilities of the dimpled channels relative to a smooth rectangular channel flow under the same flow and thermal boundary conditions, even after considering the thermal entrance effects in the channel flow and the enlarged heat transfer (wetted) area due to the dimpled surface. The three-dimensional numerical computations showed different vortex flow structures and detailed heat transfer characteristics of the dimples with different shapes, which revealed the influential mechanisms of differently shaped dimples on the convective heat transfer enhancement.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2001
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(3), pp.
337
362
.10.2514/2.1964
3.
Schukin
,
A. V.
,
Kozlov
,
A. P.
, and
Agachev
,
R. S.
,
1995
, “
Study and Application of Hemispheric Cavities for Surface Heat Transfer Augmentation
,”
ASME
Paper No. 95-GT-59.
4.
Rao
,
Y.
, and
Zang
,
S. S.
,
2014
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME J. Turbomach.
,
136
(2), p.
021017
.10.1115/1.4025197
5.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
(1), pp.
1
8
.10.1016/0894-1777(93)90075-T
6.
Chyu
,
M. K.
,
Yu
,
Y.
, and
Ding
,
H.
,
1999
, “
Heat Transfer Enhancement in Rectangular Channels With Concavities
,”
J. Enhanced Heat Transfer
,
6
(6), pp.
429
439
.10.1615/JEnhHeatTransf.v6.i6.40
7.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Gletzer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbine Power
,
122
(2), pp.
307
313
.10.1115/1.483208
8.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
,
127
(8), pp.
839
847
.10.1115/1.1994880
9.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure Due to Dimple Depression on a Channel Surface
,”
Phys. Fluids
,
13
(11), pp.
3442
3451
.10.1063/1.1404139
10.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(1), pp.
115
123
.10.1115/1.1333694
11.
Bunker
,
R. S.
, and
Donnellan
,
K. F.
,
2003
, “
Heat Transfer and Friction Factors for Flows Inside Circular Tubes With Concavity Surfaces
,”
ASME J. Turbomach.
,
125
(4), pp.
665
672
.10.1115/1.1622713
12.
Coy
,
E. B.
, and
Danczyk
,
S. A.
,
2011
, “
Measurements of the Effectiveness of Concave Spherical Dimples for Enhancement Heat Transfer
,”
J. Propul. Power
,
27
(5), pp.
955
958
.10.2514/1.B34255
13.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2009
, “
Measurement of Heat and Fluid Flow on Surface With Teardrop-Shaped Dimples
,”
Proceedings of Asian Congress on Gas Turbines
, Tokyo, Japan, Aug. 24–26, Paper No. ACGT 2009-TS41.
14.
Kim
,
H. M.
,
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2011
, “
Shape Optimization of Inclined Elliptic Dimples in a Cooling Channel
,”
J. Thermophys. Heat Transfer
,
25
(3), pp.
472
476
.10.2514/1.T3674
15.
Acharya
,
S.
, and
Zhou
,
F.
,
2012
, “
Experimental and Computational Study of Heat/Mass Transfer and Flow Structure for Four Dimple Shapes in a Square Internal Passage
,”
ASME J. Turbomach.
,
134
(6), p.
061028
.10.1115/1.4006315
16.
Park
,
J.
, and
Ligrani
,
P. M.
,
2005
, “
Numerical Predictions of Heat Transfer and Fluid Flow Characteristics for Seven Different Dimpled Surfaces in a Channel
,”
Numer. Heat Transfer A
,
47
(
3
), pp.
209
232
10.1080/10407780590886304.
17.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Zhang
,
W.
,
2013
, “
Numerical Analysis of Flow Structure and Heat Transfer Characteristics in Square Channels With Different Internal-Protruded Dimple Geometrics
,”
Int. J. Heat Mass Transfer
,
67
, pp.
81
97
.10.1016/j.ijheatmasstransfer.2013.07.094
18.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation Investigation of Flow and Heat Transfer in a Channel With Dimples and Protrusions
,”
ASME J. Turbomach.
,
130
(4), p.
041016
.10.1115/1.2812412
19.
Isaev
,
S. A.
,
Kornev
,
N. V.
,
Leontiev
,
A. I.
, and
Hassel
,
E.
,
2010
, “
Influence of the Reynolds Number and the Spherical Dimple Depth on Turbulent Heat Transfer and Hydraulic Loss in a Narrow Channel
,”
Int. J. Heat Mass Transfer
,
53
(1–3), pp.
178
197
.10.1016/j.ijheatmasstransfer.2009.09.042
20.
Turnow
,
J.
,
Kornev
,
N.
,
Zhdanov
,
V.
, and
Hassel
,
E.
,
2012
, “
Flow Structures and Heat Transfer on Dimples in a Staggered Arrangement
,”
Int. J. Heat Fluid Flow
,
35
, pp.
168
175
.10.1016/j.ijheatfluidflow.2012.01.002
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
22.
ANSYS Inc., 2013, Fluent 14.5 Help Document
.
23.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(7), p.
078001
.10.1115/1.2960953
24.
Spring
,
S.
,
Lauffer
,
D.
,
Weigand
,
B.
, and
Hase
,
M.
,
2010
, “
Experimental and Numerical Investigation of Impingement Cooling in a Combustor Liner Heat Shield
,”
ASME J. Turbomach.
,
132
(1), p.
011003
.10.1115/1.3103924
25.
Bergman
,
T.
,
Lavine
,
A.
,
Incropera
,
F. K.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
7th ed.
,
Wiley, Hoboken
,
NJ
.
26.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(8), pp.
1127
1136
.10.1016/0017-9310(80)90177-5
27.
Liou
,
T.-M.
, and
Hwang
,
J.-J.
,
1993
, “
Effect of Ridge Shapes on Turbulent Heat Transfer and Friction in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
36
(4), pp.
931
940
.10.1016/S0017-9310(05)80277-7
You do not currently have access to this content.