Three inverse heat conduction models were evaluated for their ability to predict the transient heat flux at the interior surface of the copper mold in the electroslag remelting (ESR) process for use in validating numerical ESR simulations and real-time control systems. The models were evaluated numerically using a simple one-dimensional (1D) test case and a 2D pseudo-ESR test case as a function of the thermocouple locations and sample frequency. The sensitivity of the models to measurement errors was then tested by applying random error to the numerically calculated temperature fields prior to the application of the inverse models. This error caused large fluctuations in the results of the inverse models, but these could be mitigated by implementing a simple Savitzky–Golay filter for data smoothing. Finally, the three inverse methods were applied to a fully transient ESR simulation to demonstrate their applicability to the industrial process. Based on these results, the authors recommend that the 2D control volume method described here be applied to industrial ESR trials.

References

References
1.
Busch
,
J. D.
,
DeBarbadillo
,
J. J.
, and
Krane
,
M. J. M.
,
2013
, “
Flux Entrapment and Titanium Nitride Defects in Electroslag Remelting of INCOLOY Alloys 800 and 825
,”
Metall. Mater. Trans. A
,
44
(
12
), pp.
5295
5303
.10.1007/s11661-013-1659-1
2.
Kharicha
,
A.
,
Mackenbrock
,
A.
,
Ludwig
,
A.
,
Schützenhöfer
,
W.
, and
Maronnier
,
V.
,
2007
, “
Selected Numerical Investigations on ESR Process
,”
Proceedings of the International Symposium Liquid Metal Processing and Casting
, Paris, France, Sept. 2–5, pp.
113
120
.
3.
Weber
,
V.
,
Jardy
,
A.
,
Dussoubs
,
B.
,
Ablitzer
,
D.
,
Rybéron
,
S.
,
Schmitt
,
V.
,
Hans
,
S.
, and
Poisson
,
H.
,
2009
, “
A Comprehensive Model of the Electroslag Remelting Process: Description and Validation
,”
Metall. Mater. Trans. B
,
40
(
3
), pp.
271
280
.10.1007/s11663-008-9208-9
4.
Kelkar
,
K. M.
,
Patankar
,
S. V.
,
Srivatsa
,
S. K.
,
Minisandram
,
R. S.
,
Evans
,
D. G.
,
DeBarbadillo
,
J.
,
Smith
,
R. H.
,
Helmink
,
R. C.
,
Mitchell
,
A.
, and
Sizek
,
H. A.
,
2013
, “
Computational Modeling of Electroslag Remelting (ESR) Process Used for the Production of High-Performance Alloys
,”
Proceedings of the International Symposium Liquid Metal Processing and Casting
, Austin, TX, Sept. 22–25, pp.
3
12
.
5.
Yanke
,
J.
,
Fezi
,
K.
,
Trice
,
R. W.
, and
Krane
,
M. J. M.
,
2014
, “
Simulation of Slag Skin Formation in Electroslag Remelting Using a Volume-of-Fluid Method
,”
Numer. Heat Transfer A
,
67
(
3
), pp.
268
292
.10.1080/10407782.2014.937208
6.
Hans
,
S.
,
1995
, “
Modelisation des Transferts Couples de Chauleur, de Solute et de Quantite de Mouvement Lors de la Refusion a l'arc souse Vide (VAR)—Application aux Alliages de Titane
,” Ph.D. thesis, Institut National Polytechnique de Lorraine, Nancy, France.
7.
Quatravaux
,
T.
,
2004
, “
Evolution de la modelisation du procede VAR—Contribution a la Description de la Dispersion Inclusionaire dans le puits liquide et a la Prevention de Defauts de Solidification
,” Ph. D. thesis, Institut National Polytechnique de Lorraine, Nancy, France.
8.
Yu
,
K.
,
1985
, “
Comparison of ESR-VAR Processes—Part I, Heat Transfer Characteristics of Crucible
,”
Proceedings Vacuum Metallurgy Conference
, Pittsburgh, PA, June 11–13, pp.
83
92
.
9.
Yanke
,
J.
, and
Krane
,
M. J. M.
,
2013
, “
A Parametric Study of Slag Skin Formation in Electroslag Remelting
,”
Proceedings of the International Symposium Liquid Metal Processing and Casting
, Austin, TX, Sept. 22–25, pp.
71
78
.
10.
Taylor
,
R.
, and
Mills
,
K. C.
,
1982
, “
The Thermal Conductivity of Slags Used in Electroslag Remelting
,”
Arch. Fur Das Eisenhuttenwes.
,
53
(
2
), pp.
55
63
.
11.
Yanke
,
J.
,
Fezi
,
K.
,
Fahrmann
,
M.
, and
Krane
,
M. J. M.
,
2013
, “
Predicting Melting Behavior of an Industrial Electroslag Remelting Ingot
,”
Proceedings of the International Symposium Liquid Metal Processing and Casting
, Austin, TX, Sept. 22–25, pp.
47
55
.
12.
Yanke
,
J.
,
2013
, “
Numerical Modeling of Materials Processes with Fluid-Fluid Interfaces
,” Ph. D. thesis, Purdue University, West Lafayette, IN.
13.
Krane
,
M. J. M.
,
Fahrmann
,
M.
,
Yanke
,
J.
,
Obaldia
,
E.
,
Fezi
,
K.
, and
Busch
,
J. D.
,
2011
, “
A Comparison of Prediction of Transport Phenomena in Electroslag Remelting to Industrial Data
,”
Proceedings of the International Symposium Liquid Metal Processing and Casting
, Paris, France, Sept. 25–28, pp.
65
72
.
14.
Fezi
,
K.
,
Yanke
,
J.
, and
Krane
,
M. J. M.
,
2013
, “
Modeling Macrosegregation During Electroslag Remelting of Alloy 625
,”
Proceedings of the International Symposium Liquid Metal Processing and Casting
, Austin, TX, Sept. 22–25, pp.
151
158
.
15.
Mitchell
,
A.
, and
Joshi
,
S.
,
1973
, “
The Thermal Characteristics of the Electroslag Process
,”
Metall. Trans.
,
4
(
3
), pp.
631
642
.10.1007/BF02643068
16.
Ahn
,
S.
,
Beaman
,
J. J.
,
Williamson
,
R. L.
, and
Melgaard
,
D. K.
,
2010
, “
Model-Based Control of Electroslag Remelting Process Using Unscented Kalman Filter
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
1
), pp.
615
625
.10.1115/1.4000660
17.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
,
1985
,
Inverse Heat Conduction—Ill-Posed Problems
,
Wiley
,
NY
.
18.
Beck
,
J. V.
,
1968
, “
Surface Heat Flux Determination Using an Integral Method
,”
Nucl. Eng. Des.
,
7
(
2
), pp.
170
178
.10.1016/0029-5493(68)90058-7
19.
Reinhardt
,
H. J.
,
1991
, “
A Numerical Method for the Solution of Two-Dimensional Inverse Heat Conduction Problems
,”
Int. J. Numer. Methods Eng.
,
32
(
7–8
), pp.
363
383
.10.1002/nme.1620320209
20.
Stolz
,
G.
,
1960
, “
Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes
,”
ASME J. Heat Transfer
,
82
(
1
), pp.
20
25
.10.1115/1.3679871
21.
Taler
,
J.
, and
Zima
,
W.
,
1999
, “
Solution of Inverse Heat Conduction Problems Using Control Volume Approach
,”
Int. J. Heat Mass Transfer
,
42
(
6
), pp.
1123
1140
.10.1016/S0017-9310(98)00280-4
22.
Omega, “
ANSI and IEC Color Codes for Thermocouples
,”
Wire and Connectors
, OMEGA Engineering Inc., International Thermocouple Color Codes – Thermocouple and Extension Grade Wires, pp. H-4, Available at: http://www.omega.com/temperature/pdf/tc_color_codes.pdf
23.
Savitzky
,
A.
, and
Golay
,
J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.10.1021/ac60214a047
24.
Krane
,
M. J. M.
,
2010
, “
Modeling of Transport Phenomena During Solidification Processes
,”
Metals Process Simulation
, Vol.
22B
,
ASM Handbook
, ASM International, Materials Park, OH, pp.
157
167
.
25.
Voller
,
V. R.
, and
Swaminathan
,
C. R.
,
1991
, “
General Source-Based Method for Solidification Phase Change
,”
Numer. Heat Transfer B
,
19
(
2
), pp.
175
189
.10.1080/10407799108944962
26.
2006
, Special Metals Corporation Technical Bulletin: INCONEL Alloy 625, Product Handbook of High-Performance Nickel Alloys, p. 9, Special Metals Corporation, http://www.specialmetals.com/files/PCC-8064-SM-AlloyHandbook_v04.pdf, Last Accessed Nov. 13, 2014. pp.
1
20
.
27.
Hoyle
,
G.
,
1983
,
Electroslag Processes Principles and Practice
,
Applied Science Publishers
,
London, UK
.
28.
Iida
,
T.
, and
Guthrie
,
R.
,
1988
,
The Physical Properties of Liquid Metals
,
Clarendon
,
Oxford, UK
.
29.
Jones
,
H.
,
1982
,
Rapid Solidification of Metals and Alloys
,
Institution of Metallurgists
,
London, UK
.
You do not currently have access to this content.