We introduce a new class of ventilated brake disk which incorporates an open cellular core: wire-woven bulk diamond (WBD). Transient and steady-state thermofluidic characteristics are presented. As reference, a commercially available pin-finned brake disk is also considered. At a braking power of 1.9 kW, representative of a medium sized truck descending a 2% gradient at a vehicle speed of 40 km/h (i.e., 200 rpm), the WBD cored brake disk reduces the overall brake disk temperature by up to 24% compared to the pin-finned brake disk. Results also reveal that in typical operating ranges (up to 1000 rpm), the WBD core provides up to 36% higher steady-state overall cooling capacity over that obtainable by the pin-finned core. In addition, the three-dimensional morphology of the WBD core gives rise to a tangentially and radially more uniform temperature distribution. Although the WBD core causes a higher pressure drop, this is balanced by the benefit of a stronger suction of cooling flow. Flow mixing in an enlarged heat transfer area by the WBD core is responsible for the substantial heat transfer enhancement. The WBD core is mechanically strong yet light while providing a substantial reduction in a brake's operating temperature.

References

1.
Qi
,
H. S.
, and
Day
,
A. J.
,
2007
, “
Investigation of Disc/Pad Interface Temperatures in Friction Braking
,”
Wear
,
262
(
5–6
), pp.
505
513
.10.1016/j.wear.2006.08.027
2.
Ahmed
,
I.
,
Leung
,
P. S.
, and
Datta
,
P. K.
,
2000
, “
Experimental Investigations of Disk Brake Friction
,” SAE Paper No. 01-2778.
3.
Cho
,
M. H.
,
Kim
,
S. J.
,
Basch
,
R. H.
,
Fash
,
J. W.
, and
Jang
,
H.
,
2003
, “
Tribological Study of Gray Cast Iron With Automotive Brake Linings: The Effect of Rotor Microstructure
,”
Tribol. Int.
,
36
(
7
), pp.
537
545
.10.1016/S0301-679X(02)00260-8
4.
Anoop
,
S.
,
Natarajan
,
S.
, and
Kumaresh Babu
,
S. P.
,
2009
, “
Analysis of Factors Influencing Dry Sliding Wear Behaviour of Al/SiCp-Brake Pad Tribosystem
,”
Mater. Des.
,
30
(
9
), pp.
3831
3838
.10.1016/j.matdes.2009.03.034
5.
Lee
,
K.
,
1999
, “
Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking
,” SAE Paper No. 1999-01-0483.
6.
Hunter
,
J. E.
,
Cartier
,
S. S.
,
Temple
,
D. J.
, and
Mason
,
R. C.
,
1998
, “
Brake Fluid Vaporization as a Contributing Factor in Motor Vehicle Collisions
,” SAE Paper No. 980371.
7.
Mackin
,
T. J.
,
Noe
,
S. C.
,
Ball
,
K. J.
,
Bedell
,
B. C.
,
Bim-Merle
,
D. P.
,
Bingaman
,
M. C.
,
Bomleny
,
D. M.
,
Chemlir
,
G. J.
,
Clayton
,
D. B.
,
Evans
,
H. A.
,
Gau
,
R.
,
Hart
,
J. L.
,
Karney
,
J. S.
,
Kiple
,
B. P.
,
Kaluga
,
R. C.
,
Kung
,
P.
,
Law
,
A. K.
,
Lim
,
D.
,
Merema
,
R. C.
,
Miller
,
B. M.
,
Miller
,
T. R.
,
Nielson
,
T. J.
,
O'Shea
,
T. M.
,
Olson
,
M. T.
,
Padilla
,
H. A.
,
Penner
,
B. W.
,
Penny
,
C.
,
Peterson
,
R. P.
,
Polidoro
,
V. C.
,
Raghu
,
A.
,
Resor
,
B. R.
,
Robinson
,
B. J.
,
Schambach
,
D.
,
Snyder
,
B. D.
,
Tom
,
E.
,
Tschantz
,
R. R.
,
Walker
,
B. M.
,
Wasielewski
,
K. E.
,
Webb
,
T. R.
,
Wise
,
S. A.
,
Yang
,
R. S.
, and
Zimmerman
,
R. S.
,
2002
, “
Thermal Cracking in Disc Brakes
,”
Eng. Failure Anal.
,
9
(
1
), pp.
63
76
.10.1016/S1350-6307(00)00037-6
8.
Kao
,
T. K.
,
Richmond
,
J. W.
, and
Douarre
,
A.
,
2000
, “
Brake Disc Hot Spotting and Thermal Judder: An Experimental and Finite Element Study
,”
Int. J. Veh. Des.
,
23
(
3–4
), pp.
276
296
.10.1504/IJVD.2000.001896
9.
Johnson
,
D. A.
,
Sperandei
,
B. A.
, and
Gilbert
,
R.
,
2003
, “
Analysis of the Flow Through a Vented Automobile Brake Rotor
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
979
986
.10.1115/1.1624426
10.
McPhee
,
A. D.
, and
Johnson
,
D. A.
,
2008
, “
Experimental Heat Transfer and Flow Analysis of a Vented Brake Rotor
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
458
467
.10.1016/j.ijthermalsci.2007.03.006
11.
Galindo-Lopez
,
C. H.
, and
Tirovic
,
M.
,
2008
, “
Understanding and Improving the Convective Cooling of Brake Discs With Radial Vanes
,”
IMechE J. Automob. Eng.
,
222
(
7
), pp.
1211
1229
.10.1243/09544070JAUTO594
12.
Reddy
,
S. M.
,
Mallikarjuna
,
J. M.
, and
Ganesan
,
V.
,
2008
, “
Flow and Heat Transfer Analysis of a Ventilated Disc Brake Rotor Using CFD
,” SAE Paper No. 2008-01-0822.
13.
Nejat
,
A.
,
Aslani
,
M.
,
Mirzakhalili
,
E.
, and
Najian Asl
,
R.
,
2011
, “
Heat Transfer Enhancement in Ventilated Brake Disk Using Double Airfoil Vanes
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
045001
.10.1115/1.4004931
14.
Daudi
,
A. R.
,
1999
, “
72 Curved Fins and Air Director Idea Increases Airflow Through Brake Rotors
,” SAE Paper No. 1999-01-0140.
15.
Daudi
,
A. R.
,
1999
, “
72 Curved Fin Rotor Design Reduces Maximum Rotor Temperature
,” SAE Paper No. 1999-01-3395.
16.
Wallis
,
L.
,
Leonardi
,
E.
,
Milton
,
B.
, and
Joseph
,
P.
,
2002
, “
Air Flow and Heat Transfer in Ventilated Disc Brake Rotors With Diamond and Tear-Drop Pillars
,”
Numer. Heat Transfer, Part A
,
41
(
6–7
), pp.
643
655
.10.1080/104077802317418269
17.
Wallis
,
L.
,
2003
, “
A Comparison of Bi-Directional Disc Brake Rotor Passage Designs
,” Ph.D. thesis, University of New South Wales, Sydney, Australia.
18.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2008
, “
A Computational Fluid Dynamic Analysis on the Effect of Front Row Pin Geometry on the Aerothermodynamic Properties of a Pin-Vented Brake Disc
,”
IMechE J. Automob. Eng.
,
222
(
7
), pp.
1231
1245
.10.1243/09544070JAUTO755
19.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2009
, “
An Optimization Study of a Multiple-Row Pin-Vented Brake Disc to Promote Brake Cooling Using Computational Fluid Dynamics
,”
IMechE J. Automob. Eng.
,
223
(
7
), pp.
865
875
.10.1243/09544070JAUTO1053
20.
Wadley
,
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
31
68
.10.1098/rsta.2005.1697
21.
Lee
,
Y.-H.
,
Lee
,
B.-K.
,
Jeon
,
I.
, and
Kang
,
K.-J.
,
2007
, “
Wire-Woven Bulk Kagome Truss Cores
,”
Acta Mater.
,
55
(
18
), pp.
6084
6094
.10.1016/j.actamat.2007.07.023
22.
Lee
,
M.-G.
,
Ko
,
G.-D.
,
Song
,
J.
, and
Kang
,
K.-J.
,
2012
, “
Compressive Characteristics of a Wire-Woven Cellular Metal
,”
Mater. Sci. Eng. A
,
539
, pp.
185
193
.10.1016/j.msea.2012.01.079
23.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
.10.1016/j.mechmat.2003.07.001
24.
Joo
,
J.-H.
,
Kang
,
K.-J.
,
Kim
,
T.
, and
Lu
,
T. J.
,
2011
, “
Forced Convective Heat Transfer in All Metallic Wire-Woven Bulk Kagome Sandwich Panels
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5658
5662
.10.1016/j.ijheatmasstransfer.2011.08.018
25.
Feng
,
S. S.
,
Li
,
M. Z.
,
Joo
,
J.-H.
,
Kang
,
K.-J.
,
Kim
,
T.
, and
Lu
,
T. J.
,
2012
, “
Thermomechanical Properties of Brazed Wire-Woven Bulk Kagome Cellular Metals for Multifunctional Applications
,”
J. Thermophys. Heat Transfer
,
26
(
1
), pp.
66
74
.10.2514/1.49434
26.
Limpert
,
R.
,
1975
, “
Cooling Analysis of Disc Brake Rotors
,” SAE Paper No. 751014.
27.
Sisson
,
A. E.
,
1978
, “
Thermal Analysis of Vented Brake Rotors
,” SAE Paper No. 780352.
28.
Sweet
,
J. N.
,
Roth
,
E. P.
, and
Moss
,
M.
,
1987
, “
Thermal Conductivity of Inconel 718 and 304 Stainless Steel
,”
Int. J. Thermophys.
,
8
(
5
), pp.
593
606
.10.1007/BF00503645
29.
Lyall
,
M. E.
,
2006
, “
Heat Transfer From Low Aspect Ratio Pin Fins
,” Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
30.
Barigozzi
,
G.
,
Cossali
,
G. E.
,
Perdichizzi
,
A.
,
Boden
,
A.
, and
Pacchiana
,
P.
,
2002
, “
Experimental Investigation of the Mean and Turbulent Flow Characteristics at the Exit of Automotive Vented Brake Discs
,” SAE Paper No. 2002-01-2590.
31.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
Wiley
,
Hoboken, NJ
.10.1002/9780470485682
32.
Jerhamre
,
A.
, and
Bergström
,
C.
,
2001
, “
Numerical Study of Brake Disc Cooling Accounting for Both Aerodynamic Drag Force and Cooling Efficiency
,” SAE Paper No. 2001-01-0948.
33.
Kim
,
T.
, and
Lu
,
T. J.
,
2008
, “
Pressure Drop Through Anisotropic Porous Mediumlike Cylinder Bundles in Turbulent Flow Regime
,”
ASME J. Fluids Eng.
,
130
(
10
), p.
104501
.10.1115/1.2969454
34.
Tian
,
J.
,
Kim
,
T.
,
Lu
,
T. J.
,
Hodson
,
H. P.
,
Queheillalt
,
D. T.
,
Sypeck
,
D. J.
, and
Wadley
,
H. N. G.
,
2004
, “
The Effects of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures
,”
Int. J. Heat Mass Transfer
,
47
(
14
), pp.
3171
3186
.10.1016/j.ijheatmasstransfer.2004.02.010
You do not currently have access to this content.