For spray cooling using nanofluid as the working fluid, a nano-adsorption layer is formed on the heated surface and affects the heat transfer performance of the cooling system. This study performs an experimental investigation into the formation of this nano-adsorption layer and its subsequent effects on the spray heat transfer performance of a cooling system using Al2O3–water nanofluid as the working fluid. The experiments consider four different nanoparticle volume fractions (i.e., 0 vol. %, 0.001 vol. %, 0.025 vol. %, and 0.05 vol. %) and two different surface roughnesses (i.e., 0.1 μm and 1.0 μm). The experimental results show that the 0.001 vol. % nanofluid yields the optimal heat transfer performance since most of the nanoparticles rebound from the heated surface directly on impact or are washed away by subsequently arriving droplets. The surface compositions of the spray-cooled specimens are examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results reveal that for all of the nanofluids, a nano-adsorption layer is formed on the surface of the spray-cooled test pieces. Moreover, the layer thickness increases with an increasing nanoparticle concentration. A greater nano-adsorption layer thickness not only results in a higher thermal resistance but also reduces the effect of the surface roughness in enhancing the heat transfer performance. In addition, the nano-adsorption layer absorbs the nanofluid droplets under the effects of capillary forces, and therefore reduces the contact angle, which induces a hydrophilic surface property.

References

References
1.
Sehmbey
,
M. S.
,
Pais
,
M. R.
, and
Chow
,
L. C.
,
1992
, “
Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling
,”
J. Thermophys. Heat Transfer
,
6
(3), pp.
505
512
.10.2514/3.389
2.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition FED
, Vol.
231
/MD-Vol. 66, pp.
99
105
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
,
1996
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Materials Research Society Symposium Fall Meeting
, Boston, MA, pp.
3
11
.
4.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(5), pp.
851
862
.10.1016/S0017-9310(02)00348-4
5.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
6.
Jang
,
S. P.
, and
Choi
,
S.
,
2004
, “
Role of Brownian Motion in the Enhance Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(21), pp.
4316
4318
.10.1063/1.1756684
7.
Pais
,
M. R.
,
Chow
,
L. C.
, and
Mahefkey
,
E. T.
,
1992
, “
Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
211
219
.10.1115/1.2911248
8.
Tu
,
J. P.
,
Dinh
,
N.
, and
Theofanous
,
T.
,
2004
, “
An Experimental Study of Nanofluid Boiling Heat Transfer
,”
Proceedings of the 6th International Symposium on Heat Transfer
, Beijing, China, pp.
15
19
.
9.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
10.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(2–3), pp.
265
274
.10.1007/s11051-005-3478-9
11.
Ahn
,
H. S.
,
Kim
,
H.
,
Jo
,
H. J.
,
Kang
,
S. H.
,
Chang
,
W. P.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of Critical Heat Flux Enhancement During Forced Convective Flow Boiling of Nanofluid on a Short Heated Surface
,”
Int. J. Multiphase Flow
,
36
(5), pp.
375
384
.10.1016/j.ijmultiphaseflow.2010.01.004
12.
Chang
,
T. B.
,
Syu
,
S. C.
, and
Yang
,
Y. K.
,
2012
, “
Effects of Particle Volume Fraction on Spray Heat Transfer Performance of Al2O3–Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1014
1021
.10.1016/j.ijheatmasstransfer.2011.10.009
13.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.10.1016/j.partic.2009.01.007
14.
Holman
,
J. P.
,
2000
,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
15.
Lin
,
L.
, and
Ponnappan
,
R.
,
2003
, “
Heat Transfer Characteristics of Spray Cooling in a Closed Loop
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3737
3746
.10.1016/S0017-9310(03)00217-5
16.
Liu
,
Z. H.
, and
Qiu
,
Y. H.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface
,”
Heat Mass Transfer
,
43
(
7
), pp.
699
706
.10.1007/s00231-006-0159-x
17.
Chang
,
T. B.
, and
Yang
,
Y. K.
,
2014
, “
Heat Transfer Performance of Jet Impingement Flow Boiling Using Al2O3–Water Nanofluid
,”
J. Mech. Sci. Technol.
,
28
(4), pp.
1559
1566
.10.1007/s12206-013-1143-2
You do not currently have access to this content.