In the present work, the characteristic atmospheric saturated heat flux controlled pool boiling curves for zirconia–water and silver–water nanofluids have been reproduced by the coupled map lattice (CML) method using a two-dimensional (2D) boiling field model. The heater is a long horizontal flat plate of thickness 0.44 mm. The pool height is 0.7 mm. The stirring action of the bubbles is modeled by increasing the fluid thermal diffusivity by an enhancement factor. The thermal conduction in the plate is also incorporated into the model. The basic advantage of CML is that individual bubbles are not tracked, and yet the effects of bubbles are reflected qualitatively in the final solution. In the simulation of atmospheric saturated pool boiling of water minimum cavity diameter taken is 0.8 μm based on which a random distribution of cavity sizes has been specified. In the boiling of ZrO2–water nanofluid there is a deposition of nanoparticles in the cavities on the heated surface resulting in reduction of surface roughness. This feature is taken care of by proportionate decrease in minimum cavity diameter. The CML model predicts decrease in heat transfer coefficient and increase in critical heat flux (CHF) with increase in zirconia nanoparticle concentration. In the case of Ag–water nanofluid no such deposition of nanoparticles has been reported; rather surface oxidation occurs which increases the surface roughness. This is simulated by proportionately increasing the minimum cavity diameter with weight fractions of nanoparticles. The present CML model predicts increase in the heat transfer coefficient and decrease in CHF with increase in silver nanoparticle concentration. Thus, the CML results for the boiling of the aforesaid two nanofluids match qualitatively with the published experimental works.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, FED-Vol. 231/MD-Vol. 66,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
2.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
851
862
.10.1016/S0017-9310(02)00348-4
3.
Vassallo
,
P.
,
Kumar
,
R.
, and
D'Amico
,
S.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
407
411
.10.1016/S0017-9310(03)00361-2
4.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nanofluid From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
5.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2007
, “
Experimental Studies on CHF Characteristics of Nanofluids at Pool Boiling
,”
Int. J. Multiphase Flow
,
33
, pp.
691
706
.10.1016/j.ijmultiphaseflow.2007.02.007
6.
Park
,
K.-J.
, and
Jung
,
D.
,
2007
, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4499
4502
.10.1016/j.ijheatmasstransfer.2007.03.012
7.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
,
2008
, “
Pool Boiling Heat Transfer Characteristics of ZrO2–Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
,
44
, pp.
999
1004
.10.1007/s00231-007-0345-5
8.
Liu
,
Z.-H.
, and
Liao
,
L.
,
2008
, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plain Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2593
2602
.10.1016/j.ijheatmasstransfer.2006.11.050
9.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chandra
,
R.
,
2010
, “
Preparation and Pool Boiling Characteristics of Copper Nanofluids Over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
,
53
(
9
), pp.
1673
1681
.10.1016/j.ijheatmasstransfer.2010.01.022
10.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
,
Chandra
,
R.
, and
Jain
,
P. K.
,
2011
, “
Pool Boiling Characteristics of Multiwalled Carbon Nanotube (CNT) Based Nanofluids Over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
,
54
(
7
), pp.
1289
1296
.10.1016/j.ijheatmasstransfer.2010.10.002
11.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chandra
,
R.
,
2012
, “
Preparation and Pool Boiling Characteristics of Silver Nanofluids Over a Flat Plate Heater
,”
Heat Transfer Eng.
,
33
(
2
), pp.
69
78
.10.1080/01457632.2011.589306
12.
Kaneko
,
K.
,
1993
,
Theory and Applications of Coupled Map Lattices
,
Wiley
,
Chichester, UK
.
13.
Sadasivan
,
P.
,
Unal
,
C.
, and
Nelson
,
R. A.
,
1995
, “
Nonlinear Aspects of High Heat Flux Nucleate Boiling Heat Transfer
,” Report No. LA-UR-95-609.
14.
Shoji
,
M.
, and
Tajima
,
K.
,
1997
, “
Mathematical Simulation Model of Boiling: Modes and Chaos
,”
Convective Flow and Pool Boiling Conference
,
Kloster Irsee, Germany
, May 18–23.
15.
Ellepola
,
J.
, and
Kenning
,
D.
,
1996
, “
Nucleation Site Interaction in Pool Boiling
,”
Proceedings of the Second European Thermal Sciences and 14th UK National Heat Transfer Conference
,
Rome, Italy
, May 29–31, pp. 1669–1675.
16.
Nelson
,
R.
,
Kenning
,
D.
, and
Shoji
,
M.
,
1996
, “
Nonlinear Dynamics in Boiling Phenomena
,”
ASME J. Heat Transfer Soc., Jpn.
,
35
(
1
), pp.
22
34
.
17.
Nelson
,
R.
,
Kenning
,
D.
, and
Shoji
,
M.
,
1997
, “
Nonlinear Effects and Behavior in Nucleate Boiling
,”
Fourth Experimental Chaos Conference
,
Boca Raton, FL
, Aug. 6–8.
18.
Yanagita
,
T.
,
1992
, “
Phenomenology for Boiling: A Coupled Map Lattice Model
,”
Chaos
,
2
, pp.
343
350
.10.1063/1.165877
19.
Shoji
,
M.
,
1998
, “
Boiling Simulator—A Simple Theoretical Model of Boiling
,”
Third International Conference of Multiphase Flow
,
Lyon, France
, June 8–12, pp. 1–7.
20.
Ghoshdastidar
,
P. S.
,
Kabelac
,
S.
, and
Mohanty
,
A.
,
2004
, “
Numerical Modelling of Atmospheric Pool Boiling by the Coupled Map Lattice Method
,”
J. Mech. Eng. Sci., IMechE Part C
,
218
, pp.
195
205
.10.1243/095440604322886946
21.
Gupta
,
A.
, and
Ghoshdastidar
,
P. S.
,
2006
, “
A Three-Dimensional Numerical Modeling of Atmospheric Pool Boiling by the Coupled Map Lattice Method
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1149
1158
.10.1115/1.2352785
22.
Sakashita
,
H.
, and
Kumada
,
T.
,
2001
, “
Method for Predicting Boiling Curves of Saturated Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
44
(
3
), pp.
673
682
.10.1016/S0017-9310(00)00104-6
23.
Maruyama
,
S.
,
Shoji
,
M.
, and
Shimizu
,
S.
,
1992
, “
A Numerical Simulation of Transition Boiling Heat Transfer
,”
Proceedings of the Second JSME–KSME Thermal Engineering Conference
, Kitakyusyu, Oct. 19–21, Vol.
3
, pp.
345
348
.
24.
He
,
Y.
,
Shoji
,
M.
, and
Maruyama
,
S.
,
2001
, “
Numerical Study of High Heat Flux Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2357
2373
.10.1016/S0017-9310(00)00269-6
25.
Xiao
,
B.
, and
Boming
,
Y.
,
2007
, “
A Fractal Model for Critical Heat Flux in Pool Boiling
,”
Int. J. Therm. Sci.
,
46
, pp.
426
433
.10.1016/j.ijthermalsci.2006.07.005
26.
Chung
,
H. J.
, and
No
,
H. C.
,
2007
, “
A Nucleate Boiling Limitation Model for the Prediction of Pool Boiling CHF
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2944
2951
.10.1016/j.ijheatmasstransfer.2006.12.023
27.
Chu
,
H.
, and
Boming
,
Y.
,
2009
, “
A New Comprehensive Model for Nucleate Pool Boiling Heat Transfer of Pure Liquid at Low to High Heat Fluxes Including CHF
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4203
4210
.10.1016/j.ijheatmasstransfer.2009.04.010
28.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
, pp.
659
669
.10.1115/1.2910737
29.
Stephan
,
K.
, and
Abdelsalam
,
M.
,
1980
, “
Heat-Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
, pp.
73
87
.10.1016/0017-9310(80)90140-4
30.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
,
1997
,
Computational Fluid Mechanics and Heat Transfer
,
2nd ed.
,
Taylor and Francis
,
London, UK
.
31.
Carnahan
,
B.
,
Luther
,
H. A.
, and
Wilkes
,
J. O.
,
1969
,
Applied Numerical Methods
,
Wiley
,
New York
.
32.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
Chichester, UK
.
33.
van Stralen
,
S.
, and
Cole
,
R.
,
1979
,
Boiling Phenomena
, Vol.
1
,
Hemisphere
,
New York
.
34.
Holman
,
J. P.
,
1986
,
Heat Transfer
,
6th ed.
,
McGraw-Hill
,
New York
.
35.
Perry
,
H.
,
1997
,
Perry's Chemical Engineers' Handbook
,
7th ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.