Dry-out is an essential phenomenon that has been observed experimentally in both slug and annular flow regimes for flow boiling in mini and microchannels. The dry-out leads to a drastic drop in heat transfer coefficient, reversible flow and may cause a serious damage to the microchannel. Consequently, the study and prediction of this phenomenon is an essential objective for flow boiling in microchannels. The aim of this work is to develop an analytical model to predict the critical heat flux (CHF) based on the prediction of liquid film variation in annular flow regime for flow boiling in a horizontal uniformly heated circular microtube. The model is developed by applying one-dimensional (1D) separated flow model for a control volume in annular flow regime for steady, and sable saturated flow boiling. The influence of interfacial shear and inertia force on the liquid film thickness is taken into account. The effects of operating conditions, channel sizes, and working fluids on the CHF have been investigated. The model was compared with 110 CHF data points for flow boiling of various working fluids, (water, LN2, FC-72, and R134a) in single and multiple micro/minichannels with diameter ranges of (0.38Dh3.04 mm) and heated-length to diameter ratios in the range of (117.7 (117.7Lh/D470)470). Additionally, three CHF correlations developed for saturated flow boiling in a single microtube have been employed for the model validation. The model showed a good agreement with the experimental CHF data with mean absolute error (MAE) = 19.81%.

References

1.
Kandlikar
,
S. G.
,
2001
, “
Critical Heat Flux in Sub-Cooled Flow Boiling—An Assessment of Current Understanding and Future Directions for Research
,”
Multiphase Sci. Technol.
,
13
(
3
), pp.
207
232
.10.1615/MultScienTechn.v13.i3-4.40
2.
Katto
,
Y.
,
1978
, “
A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
12
), pp.
1527
1542
.10.1016/0017-9310(78)90009-1
3.
Katto
,
Y.
, and
Ohono
,
H.
,
1984
, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1641
1648
.10.1016/0017-9310(84)90276-X
4.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10
), pp.
2045
2059
.10.1016/j.ijheatmasstransfer.2003.12.006
5.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.10.1115/1.1839587
6.
Qi
,
S. L.
,
Zhang
,
P.
,
Wang
,
R. Z.
, and
Xu
,
L. X.
,
2007
, “
Flow Boiling of Liquid Nitrogen in Micro-Tubes: Part II—Heat Transfer Characteristics and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5017
5030
.10.1016/j.ijheatmasstransfer.2007.08.017
7.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
,
2006
, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1058
1072
.10.1016/j.ijheatmasstransfer.2005.09.004
8.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
,
2006
, “
Investigation of Saturated Critical Heat Flux in a Single Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
765
774
.10.1016/j.expthermflusci.2006.03.006
9.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
10.
Kosar
,
A.
,
2009
, “
A model to Predict Saturated Critical Heat Flux in Minichannels and Microchannels
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
261
270
.10.1016/j.ijthermalsci.2008.08.008
11.
Kandlikar
,
S. G.
,
2010
, “
A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081501
.10.1115/1.4001124
12.
Revellin
,
R.
, and
Thome
,
J. R.
,
2008
, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1216
1225
.10.1016/j.ijheatmasstransfer.2007.03.002
13.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
,
1999
, “
Gas–Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
377
394
.10.1016/S0301-9322(98)00054-8
14.
Serizawa
,
A.
,
Feng
,
Z.
, and
Kawara
,
Z.
,
2002
, “
Two-Phase Flow in Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
703
714
.10.1016/S0894-1777(02)00175-9
15.
Wu
,
Z.
, and
Li
,
W.
,
2011
, “
A New Predictive Tool for Saturated Critical Heat Flux in Micro/Minichannels: Effect of the Heated Length-to-Diameter Ratio
,”
Int. J. Heat Mass Transfer
,
54
(
13
), pp.
2880
2889
.10.1016/j.ijheatmasstransfer.2011.03.011
16.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 2—Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
873
886
.10.1016/j.expthermflusci.2010.12.003
17.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 1—Two-Phase Flow Patterns and Film Thickness Measurements
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
37
47
.10.1016/j.expthermflusci.2010.08.004
18.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Electronic Packaging
,
126
(
2
), pp.
213
224
.10.1115/1.1756145
19.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels
,”
J. Micromech. Microeng.
,
17
(
4
), pp.
788
796
.10.1088/0960-1317/17/4/016
20.
Kuznetsov
,
V. V.
,
Shamirzaev
,
A. S.
,
Kozulin
,
I. A.
, and
Kozlov
,
S. P.
,
2013
, “
Correlation of the Flow Pattern and Flow Boiling Heat Transfer in Microchannels
,”
Heat Transfer Eng.
,
34
(
2–3
), pp.
235
245
.10.1080/01457632.2013.703564
21.
Chen
,
T.
, and
Garimella
,
S. V.
,
2012
, “
A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
134
(
1
), pp.
1
9
.10.1615/ICHMT.2012.CHT-12
22.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
,
2002
, “
Forced Convection Boiling in a Microchannel Heat Sink
,”
Int. J. Microelecromech. Syst.
,
10
(
1
), pp.
80
87
.10.1109/84.911095
23.
Zhang
,
L.
,
Koo
,
J.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
,
2002
, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
Int. J. Microelecromech. Syst.
,
11
(
1
), pp.
12
19
.10.1109/84.982858
24.
Lee
,
H. J.
,
Liu
,
D. Y.
, and
Yao
,
S.
,
2010
, “
Flow Instability of Evaporative Micro-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9
), pp.
1740
1749
.10.1016/j.ijheatmasstransfer.2010.01.016
25.
Moriyama
,
K.
,
Inoue
,
A.
, and
Ohira
,
H.
,
1992
, “
The Thermo Hydraulic Characteristics of Two-Phase Flow in Extremely Narrow Channels
,”
J. Heat Transfer-Jpn. Res.
,
21
(
8
), pp.
838
856
.
26.
Ghiaasiaan
,
S. M.
,
2008
,
Two-Phase Flow, Boiling, and Condensation in Convective and Miniature Systems
,
Cambridge University
,
New York
.
27.
Hazuku
,
T.
,
Fukamachi
,
N.
,
Takamasa
,
T.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2005
, “
Measurement of Liquid Film in Microchannels Using a Laser Focus Displacement Meter
,”
Exp. Fluids
,
38
(
6
), pp.
780
788
.10.1007/s00348-005-0973-9
28.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels Part II: Heat Transfer Characteristics of Refrigerant R245fa
,”
Int. J. Heat Mass Transfer
,
51
(21–22), pp.
5415
5425
.10.1016/j.ijheatmasstransfer.2008.03.007
29.
Ishii
,
M.
, and
Mishima
,
K.
,
1984
, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
,
82
(
2–3
), pp.
107
126
.10.1016/0029-5493(84)90207-3
30.
Wallis
,
B. G.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
31.
Kim
,
S.
, and
Mudawar
,
I.
,
2012
, “
Theoretical Model for Annular Flow Condensation in Rectangular Micro-Channels
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
958
970
.10.1016/j.ijheatmasstransfer.2011.10.014
32.
Aussillous
,
P.
, and
Quere
,
D.
,
2000
, “
Quick Deposition of a Fluid on the Wall of a Tube
,”
Phys. Fluids
,
12
(
10
), pp.
2367
2371
.10.1063/1.1289396
33.
Bretherton
,
F. P.
,
1961
, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
(
2
), pp.
166
168
.10.1017/S0022112061000160
34.
Irandoust
,
S.
, and
Andersson
,
B.
,
1989
, “
Liquid Film in Taylor Flow Through a Capillary
,”
Ind. Eng. Chem.
,
28
(
11
), pp.
1684
1688
.10.1021/ie00095a018
35.
Roday
,
A. P.
, and
Jensen
,
M. K.
,
2009
, “
Study of the Critical Heat Flux Condition With Water and R-123 During Flow Boiling in Micro-Tubes. Part I: Experimental Results and Discussion of Parametric Effects
,”
Int. J. Heat Mass Transfer
,
52
(13–14), pp.
3235
3249
.10.1016/j.ijheatmasstransfer.2009.02.003
36.
Fan
,
Y. F.
, and
Hassan
,
I.
,
2013
, “
Effect of Inlet Restriction on Flow Boiling Heat Transfer in a Horizontal Microtube
,”
ASME J. Heat Transfer
,
135
(2), pp.
1
9
.10.1115/1.4007610
37.
Park
,
J. E.
, and
Thome
,
J. R.
,
2009
, “
Critical Heat Flux in Multi-Microchannel Copper Elements With Low Pressure Refrigerants
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
110
122
.10.1016/j.ijheatmasstransfer.2009.09.047
38.
Bao
,
Z. Y.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2000
, “
Flow Boiling Heat Transfer of Freon R11 and HCFC123 in Narrow Passages
,”
Int. J. Heat Mass Transfer
,
43
(18), pp.
3347
3358
.10.1016/S0017-9310(99)00379-8
You do not currently have access to this content.