This paper numerically investigates the heat transfer characteristics of a mesoscale liquid film slurry flow containing micro-encapsulated phase change material (MEPCM) in the presence of evaporation. The two-phase evaporating liquid film flow is modeled using one-fluid volume-of-fluid (VOF) formulation. During the evaporation process of the base fluid, the concentration of MEPCM in the slurry film increases as it flows along a heated plate, resulting in a continuous variation of its effective thermal properties. The effect of MEPCM on the evolution of the liquid film thickness under different operating conditions is presented. It is shown that the MEPCM suppresses the rate of decline in the liquid film thickness, which results in a higher heat transfer coefficient compared to that of pure liquid film under similar operating conditions. This study also provides an understanding towards delaying of the dry-out condition in slurry liquid film flow evaporation compared to that of the pure fluid.

References

1.
Kasza
,
K.
, and
Chen
,
M.
,
1985
, “
Improvement of the Performance of Solar Energy or Waste Heat Utilization Systems by Using Phase-Change Slurry as an Enhanced Heat-Transfer Storage Fluid
,”
ASME J. Sol. Energy Eng.
,
107
(
3
), pp.
229
236
.10.1115/1.3267683
2.
Colvin
,
D. P.
, and
Mulligan
,
J. C.
,
1986
, “
Spacecraft Heat Rejection Methods: Active and Passive Heat Transfer for Electronic Systems-Phase I
,” US Air Force Wright Aeronautical Labs, Daytona, OH, Technical Report No. AFWAL-TR-3074.
3.
Colvin
,
D. P.
, and
Mulligan
,
J. C.
,
1987
, “
Microencapsulated Phase Change for Storage of Heat
,” NASA George C. Marshall Space Flight Center, Huntsville, AL, Technical Report No. MFSA-27198.
4.
Goel
,
M.
,
Roy
,
S.
, and
Sengupta
,
S.
,
1994
, “
Laminar Forced Convection Heat Transfer in Microcapsulated Phase Change Material Suspensions
,”
Int. J. Heat Mass Transfer
,
37
(
4
), pp.
593
604
.10.1016/0017-9310(94)90131-7
5.
Inaba
,
H.
,
Kim
,
M.
, and
Horibe
,
A.
,
2004
, “
Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries With Plural Microcapsules Having Different Diameters
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
558
565
.10.1115/1.1773584
6.
Alvarado
,
J. L.
,
Marsh
,
C.
,
Sohn
,
C.
,
Phetteplace
,
G.
, and
Newell
,
T.
,
2007
, “
Thermal Performance of Microencapsulated Phase Change Material Slurry in Turbulent Flow Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1938
1952
.10.1016/j.ijheatmasstransfer.2006.09.026
7.
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Chen
,
B.
,
Zeng
,
R.
, and
Song
,
Q.
,
2008
, “
Heat Transfer of Microencapsulated PCM Slurry Flow in a Circular Tube
,”
AIChE J.
,
54
(
4
), pp.
1110
1120
.10.1002/aic.11431
8.
Hao
,
Y. L.
, and
Tao
,
Y. X.
,
2004
, “
A Numerical Model for Phase-Change Suspension Flow in Microchannels
,”
Numer. Heat Transfer, Part A
,
46
(
1
), pp.
55
77
.10.1080/10407780490457545
9.
Xing
,
K. Q.
,
Tao
,
Y. X.
, and
Hao
,
Y. L.
,
2004
, “
Performance Evaluation of Liquid Flow With NPCM in Microchannels
,”
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
, Charlotte, NC, July 11–15, pp.
283
292
.
10.
Kuravi
,
S.
,
Kota
,
K. M.
,
Du
,
J.
, and
Chow
,
L. C.
,
2009
, “
Numerical Investigation of Flow and Heat Transfer Performance of Nano-Encapsulated Phase Change Material Slurry in Microchannels
,”
ASME J. Heat Transfer
,
131
(
6
), p.
062901
.10.1115/1.3084123
11.
Sabbah
,
R.
,
Farid
,
M. M.
, and
Al-Hallaj
,
S.
,
2009
, “
Micro-Channel Heat Sink With Slurry of Water With Micro-Encapsulated Phase Change Material: 3D-Numerical Study
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
445
454
.10.1016/j.applthermaleng.2008.03.027
12.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2011
, “
Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Material: Numerical Study
,”
ASME J. Heat Transfer
,
133
(
12
), p.
121702
.10.1115/1.4004450
13.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2012
, “
Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Materials: Experimental Study
,”
ASME J. Heat Transfer
,
134
(
4
), p.
044501
.10.1115/1.4005311
14.
Thome
,
J.
,
Groll
,
M.
, and
Mertz
,
R.
,
2003
, “
Heat Transfer and Fluid Flow in Microchannels
,”
Heat Transfer and Fluid Flows in Microchannels, Heat Exchanger Design Update
, Vol.
2
,
Begell House
,
New York
.
15.
Kandlikar
,
S.
,
2001
, “
Two-Phase Flow Patterns, Pressure Drop and Heat Transfer During Boiling in Minichannel and Microchannel Flow Passages of Compact Heat Exchangers
,”
Compact Heat Exchangers and Enhancement Technology for the Process Industries
,
Begell House
,
New York
, pp.
319
334
.
16.
Bergles
,
A. E.
,
Lienhard
,
V, J. H.
,
Kendall
,
G. E.
, and
Griffith
,
P.
,
2003
, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
,
24
(
1
), pp.
18
40
.10.1080/01457630304041
17.
Thome
,
J.
,
Dupont
,
V.
, and
Jacobi
,
A.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.10.1016/j.ijheatmasstransfer.2004.01.006
18.
Mehendale
,
S.
, and
Jacobi
,
A.
,
2000
, “
Evaporative Heat Transfer in Mesoscale Heat Exchangers
,”
ASHRAE Trans.
, 106(1), pp.
446
452
.
19.
Jacobi
,
A. M.
, and
Thome
,
J. R.
,
2002
, “
Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1131
1136
.10.1115/1.1517274
20.
Lakehal
,
D.
,
Meier
,
M.
, and
Fulgosi
,
M.
,
2002
, “
Interface Tracking Towards the Direct Simulation of Heat and Mass Transfer in Multiphase Flows
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
242
257
.10.1016/S0142-727X(02)00172-8
21.
Xiong
,
Q.
,
Deng
,
L.
,
Wang
,
W.
, and
Ge
,
W.
,
2011
, “
SPH Method for Two-Fluid Modeling of Particle–Fluid Fluidization
,”
Chem. Eng. Sci.
,
66
(
9
), pp.
1859
1865
.10.1016/j.ces.2011.01.033
22.
Xiong
,
Q.
,
Li
,
B.
, and
Xu
,
J.
,
2013
, “
GPU-Accelerated Adaptive Particle Splitting and Merging in SPH
,”
Comput. Phys. Commun.
,
184
(
7
), pp.
1701
1707
.10.1016/j.cpc.2013.02.021
23.
Xiong
,
Q.
,
Li
,
B.
,
Xu
,
J.
,
Wang
,
X.
,
Wang
,
L.
, and
Ge
,
W.
,
2012
, “
Efficient 3D DNS of Gas–Solid Flows on Fermi GPGPU
,”
Comput. Fluids
,
70
, pp.
86
94
.10.1016/j.compfluid.2012.08.026
24.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2011
, “
Effect of Nanofluids on Thin Film Evaporation in Microchannels
,”
J. Nanopart. Res.
,
13
(
10
), pp.
5033
5047
.10.1007/s11051-011-0484-y
25.
Charunyakorn
,
P.
,
Sengupta
,
S.
, and
Roy
,
S.
,
1991
, “
Forced Convection Heat Transfer in Microencapsulated Phase Change Material Slurries: Flow in Circular Ducts
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
819
833
.10.1016/0017-9310(91)90128-2
26.
Sabbah
,
R.
,
2008
, “
Numerical and Experimental Investigation of Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Material
,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.
27.
Sinha-Ray
,
S.
,
Sahu
,
R. P.
, and
Yarin
,
A. L.
,
2011
, “
Nano-Encapsulated Smart Tunable Phase Change Materials
,”
Soft Matter
,
7
(
19
), pp.
8823
8827
.10.1039/c1sm05973d
28.
Sanchez-Silva
,
L.
,
Rodríguez
,
J. F.
,
Romero
,
A.
,
Borreguero
,
A. M.
,
Carmona
,
M.
, and
Sánchez
,
P.
,
2010
, “
Microencapsulation of PCMs With a Styrene-Methyl Methacrylate Copolymer Shell by Suspension-Like Polymerisation
,”
Chem. Eng. J.
,
157
(
1
), pp.
216
222
.10.1016/j.cej.2009.12.013
29.
Dupont, ISCEON 39TC(R-423A): Technical Information.
30.
Sánchez Silva
,
L.
,
Rodríguez
,
J. F.
,
Carmona
,
M.
,
Romero
,
A.
, and
Sánchez
,
P.
,
2011
, “
Thermal and Morphological Stability of Polystyrene Microcapsules Containing Phase-Change Materials
,”
J. Appl. Polym. Sci.
,
120
(
1
), pp.
291
297
.10.1002/app.33112
31.
Guyer
,
E. C.
, and
Brownell
,
D. L.
,
1999
,
Handbook of Applied Thermal Design
,
CRC Press
,
Boca Raton, FL
.
32.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Dover, Mineola, NY.
33.
Vand
,
V.
,
1945
, “
Theory of Viscosity of Concentrated Suspensions
,”
Nature (London)
,
155
, pp.
364
365
.10.1038/155364b0
34.
Leal
,
L. G.
,
1973
, “
On the Effective Conductivity of a Dilute Suspension of Spherical Drops in the Limit of Low Particle Peclet Number
,”
Chem. Eng. Commun.
,
1
(
1
), pp.
21
31
.10.1080/00986447308960412
35.
Nir
,
A.
, and
Acrivos
,
A.
,
1976
, “
The Effective Thermal Conductivity of Sheared Suspensions
,”
J. Fluid Mech.
,
78
(
1
), pp.
33
48
.10.1017/S0022112076002310
36.
ANSYS INC.,
2008
, “
FLUENT V12.0 User's Guide
,” Lebanon, NH.
37.
Carey
,
V.
,
1992
,
Vapor–Liquid Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Hemisphere Publishing
,
New York
.
38.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Academic Press
,
New York
.
You do not currently have access to this content.