In gas–liquid two-phase flow, void fraction is the most unique parameter which influences all the transport processes. In the most general case, though the void fraction varies nonlinearly with the channel length, many practical simulations make use of the “system mean void fraction.” The present investigation makes a critical assessment of different system mean void fraction models for a wide range of slip velocity and density difference between the phases. To this end, different correlations for slip ratio have been considered and, for all the cases, closed form expression for the system mean void fraction has been presented. The local as well as the system mean void fractions have also been estimated numerically from a heat transfer based model. Predictions from the heat transfer based model and the slip ratio based model have been compared. As an application, the slip ratio based system mean void fraction is used in to build the moving boundary model for phase-change heat exchangers. The prediction of startup transients for both an evaporator and a condenser of an automotive air conditioning system (AACS) agrees well with the experimental results.

References

References
1.
Tandon
,
T. N.
,
Varma
,
H. K.
, and
Gupta
,
C. P.
,
1985
, “
A Void Fraction Model for Annular Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
28
(
1
), pp.
191
198
.
2.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
3.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2004
, “
Interfacial Measurements in Stratified Types of Flow. Part II: Measurements for R-22 and R-410A
,”
Int. J. Multiphase Flow
,
30
(
2
), pp.
125
137
.
4.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
5.
Rice
,
C. K.
,
1987
, “
Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory Predictions
,”
ASHRAE Trans.
,
93
(
3035
), pp.
341
367
.
6.
Diener
,
R.
, and
Friedel
,
L.
,
1998
, “
Reproductive Accuracy of Selected Void Fraction Correlations for Horizontal and Vertical Upflow
,”
Forsch. Ingenieurwes.
,
64
(
4–5
), pp.
87
97
.
7.
Xu
,
Y.
, and
Fang
,
X.
,
2014
, “
Correlations of Void Fraction for Two-Phase Refrigerant Flow in Pipes
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
242
251
.
8.
Woldesemayat
,
M. A.
, and
Ghajar
,
A. J.
,
2007
, “
Comparison of Void Fraction Correlations for Different Flow Patterns in Horizontal and Upward Inclined Pipes
,”
Int. J. Multiphase Flow
,
33
(
4
), pp.
347
370
.
9.
Wedekind
,
G. L.
, and
Stoecker
,
W. F.
,
1968
, “
Theoretical Model for Predicting the Transient Response of the Mixture-Vapor Transition Point in Horizontal Evaporating Flow
,”
ASME J. Heat Transfer
,
90
(
1
), pp.
165
174
.
10.
Wedekind
,
G. L.
,
Bhatt
,
B. L.
, and
Beck
,
B. T.
,
1978
, “
A System Mean Void Fraction Model for Predicting Various Transient Phenomena Associated With Two-Phase Evaporating and Condensing Flows
,”
Int. J. Multiphase Flow
,
4
(
1
), pp.
97
114
.
11.
Llopis
,
R.
,
Cabello
,
R.
, and
Torrella
,
E.
,
2008
, “
A Dynamic Model of a Shell-and-Tube Condenser Operating in a Vapour Compression Refrigeration Plant
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
926
934
.
12.
Ribatski
,
G.
, and
Thome
,
J. R.
,
2005
, “
Dynamics of Two-Phase Flow Across Horizontal Tube Bundles—A Review
,”
Rev. Eng. Térm.
,
4
(
2
), pp.
122
131
.
13.
Bamardouf
,
K.
, and
McNeil
,
D. A.
,
2009
, “
Experimental and Numerical Investigation of Two-Phase Pressure Drop in Vertical Cross-Flow Over a Horizontal Tube Bundle
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1356
1365
.
14.
Milián
,
V.
,
Navarro-Esbrí
,
J.
,
Ginestar
,
D.
,
Molés
,
F.
, and
Peris
,
B.
,
2013
, “
Dynamic Model of a Shell-and-Tube Condenser. Analysis of the Mean Void Fraction Correlation Influence on the Model Performance
,”
Energy
,
59
, pp.
521
533
.
15.
Ghajar
,
A. J.
, and
Bhagwat
,
S. M.
,
2013
, “
Effect of Void Fraction and Two-Phase Dynamic Viscosity Models on Prediction of Hydrostatic and Frictional Pressure Drop in Vertical Upward Gas–Liquid Two-Phase Flow
,”
Heat Transfer Eng.
,
34
(
13
), pp.
1044
1059
.
16.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
247
252
.
17.
Thom
,
J. R. S.
,
1964
, “
Prediction of Pressure Drop During Forced Circulation Boiling of Water
,”
Int. J. Heat Mass Transfer
,
7
(
7
), pp.
709
724
.
18.
Smith
,
S. L.
,
1969
, “
Void Fractions in Two-Phase Flow: A Correlation Based Upon an Equal Velocity Head Model
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
647
664
.
19.
Farzad
,
M.
, and
O'Neal
,
D. L.
,
1994
, “
The Effect of Void Fraction Model on Estimation of Air Conditioner System Performance Variables Under a Range of Refrigerant Charging Conditions
,”
Int. J. Refrig.
,
17
(
2
), pp.
85
93
.
20.
Hughmark
,
G. A.
,
1965
, “
Holdup and Heat Transfer in Horizontal Slug Gas-Liquid Flow
,”
Chem. Eng. Sci.
,
20
(
12
), pp.
1007
1010
.
21.
Ghajar
,
A. J.
, and
Tang
,
C. C.
,
2012
, “
Void Fraction and Flow Patterns of Two-Phase Flow in Upward and Downward Vertical and Horizontal Pipes
,”
Advances in Multiphase Flow and Heat Transfer
,
Bentham-e-Books
,
UAE
, pp.
175
201
.
22.
Bhagwat
,
S. M.
, and
Ghajar
,
A. J.
,
2012
, “
Similarities and Differences in the Flow Patterns and Void Fraction in Vertical Upward and Downward Two Phase Flow
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
213
227
.
23.
MacArthur
,
J. W.
, and
Grald
,
E. W.
,
1989
, “
Unsteady Compressible Two-Phase Flow Model for Predicting Cyclic Heat Pump Performance and a Comparison With Experimental Data
,”
Int. J. Refrig.
,
12
(
1
), pp.
29
41
.
24.
Rasmussen
,
B. P.
,
2005
, “
Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
25.
Jensen
,
J. M.
, and
Tummescheit
,
H.
,
2002
, “
Moving Boundary Models for Dynamic Simulations of Two-Phase Flows
,”
2nd International Modelica Conference
,
Oberpfaffenhofen
,
Germany
, pp.
235
244
.
26.
Jensen
,
J. M.
,
2003
, “
Dynamic Modeling of Thermo-Fluid Systems-With Focus on Evaporators for Refrigeration
,” Ph.D. thesis, Technical University of Denmark, Kongens Lyngby, Denmark.
27.
Eldredge
,
B. D.
,
Rasmussen
,
B. P.
, and
Alleyne
,
A. G.
,
2008
, “
Moving-Boundary Heat Exchanger Models With Variable Outlet Phase
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
6
), p.
061003
.
28.
Li
,
B.
, and
Alleyne
,
A. G.
,
2010
, “
A Dynamic Model of a Vapor Compression Cycle With Shut-Down and Start-Up Operations
,”
Int. J. Refrig.
,
33
(
3
), pp.
538
552
.
29.
McKinley
,
T. L.
, and
Alleyne
,
A. G.
,
2008
, “
An Advanced Nonlinear Switched Heat Exchanger Model for Vapor Compression Cycles Using the Moving-Boundary Method
,”
Int. J. Refrig.
,
31
(
7
), pp.
1253
1264
.
30.
Li
,
B.
,
Jain
,
N.
,
Mohs
,
W. F.
,
Munns
,
S.
,
Patnaik
,
V.
,
Berge
,
J.
, and
Alleyne
,
A. G.
,
2012
, “
Dynamic Modeling of Refrigerated Transport Systems With Cooling-Mode/Heating-Mode Switch Operations
,”
HVAC&R Res.
,
18
(
5
), pp.
974
996
.
31.
Bendapudi
,
S.
,
Braun
,
J. E.
, and
Groll
,
E. A.
,
2008
, “
A Comparison of Moving-Boundary and Finite-Volume Formulations for Transients in Centrifugal Chillers
,”
Int. J. Refrig.
,
31
(
8
), pp.
1437
1452
.
32.
He
,
X. D.
,
Liu
,
S.
,
Asada
,
H. H.
, and
Itoh
,
H.
,
1998
, “
Multivariable Control of Vapor Compression Systems
,”
HVAC&R Res.
,
4
(
3
), pp.
205
230
.
33.
Zhang
,
W. J.
, and
Zhang
,
C. L.
,
2006
, “
A Generalized Moving-Boundary Model for Transient Simulation of Dry-Expansion Evaporators Under Larger Disturbances
,”
Int. J. Refrig.
,
29
(
7
), pp.
1119
1127
.
34.
Chisholm
,
D.
,
1983
,
Two-Phase Flow in Pipelines and Heat Exchangers
,
Georg Godwin
,
London
.
35.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part II. Two-Phase Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1239
1256
.
36.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
37.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.
38.
Klimenko
,
V. V.
,
1990
, “
A Generalized Correlation for Two-Phase Forced Flow Heat Transfer—Second Assessment
,”
Int. J. Heat Mass Transfer
,
33
(
10
), pp.
2073
2088
.
39.
Raman
,
A. A.
,
1995
, “
Modeling of Condensers, Evaporators and Refrigeration Circuit in Automobile Air Conditioning Systems
,” Ph.D. thesis, University of Valladolid, Valladolid, Spain (in Spanish).
40.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
41.
Datta
,
S. P.
,
Das
,
P. K.
, and
Mukhopadhyay
,
S.
,
2013
, “
Performance of an Off-Board Test Rig for an Automotive Air Conditioning System
,”
Int. J. Air-Cond. Refrig.
,
21
(
3
), p.
1350020
.
42.
REFPROP 9.1,
2010
, “
Reference Fluid Thermodynamic and Transport Properties
,” National Institute of Standards and Technology (NIST), Gaitherburg, MD.
You do not currently have access to this content.