This paper presents a joint state and input estimation algorithm for the one-dimensional heat-conduction problem. A computationally efficient method is proposed in this work to solve the inverse heat-conduction problem (IHCP) using orthogonal collocation method (OCM). A Kalman filter (KF) algorithm is used in conjunction with a recursive-weighted least-square (RWLS)-based method to simultaneously estimate the input boundary condition and the temperature field over the heat-conducting element. A comparison study of the algorithm is shown with explicit finite-difference method (FDM) of approximation and analytical solution of the forward problem, which clearly reveals the high accuracy with lower-dimensional modeling. The estimation results show that the performance of the estimator is robust to noise sensitivity up to a certain level, which is practically acceptable.

References

References
1.
Haberman
,
R.
,
1987
,
Elementary Applied Partial Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Faghri
,
A.
,
Zhang
,
Y.
, and
Howell
,
J. R.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Columbia, MO
.
3.
Villadsen
,
J.
, and
Stewart
,
W.
,
1967
, “
Solution of Boundary-Value Problems by Orthogonal Collocation
,”
Chem. Eng. Sci.
,
22
(
11
), pp.
1483
1501
.
4.
Bar-Shalom
,
Y.
, and
Li
,
X.-R.
,
1993
,
Estimation and Tracking: Principles, Techniques, and Software
,
Artech House
, Boston.
5.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley-Interscience
, New York.
6.
Zhou
,
J.
,
Zhang
,
Y.
,
Chen
,
J. K.
, and
Feng
,
Z. C.
,
2011
, “
Inverse Estimation of Surface Heating Condition in a Finite Slab With Temperature-Dependent Thermophysical Properties
,”
Heat Transfer Eng.
,
32
(
10
), pp.
861
875
.
7.
Chen
,
T.-C.
, and
Liu
,
C.-C.
,
2008
, “
Inverse Estimation of Heat Flux and Temperature on Nozzle Throat-Insert Inner Contour
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3571
3581
.
8.
Molavi
,
H.
,
Rahmani
,
R. K.
,
Pourshaghaghy
,
A.
,
Tashnizi
,
E. S.
, and
Hakkaki-Fard
,
A.
,
2010
, “
Heat Flux Estimation in a Nonlinear Inverse Heat Conduction Problem With Moving Boundary
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081301
.
9.
Tadrari
,
O.
, and
Lacroix
,
M.
,
2006
, “
Prediction of Protective Banks in High Temperature Smelting Furnaces by Inverse Heat Transfer
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2180
2189
.
10.
Wei
,
C. C.
,
Chen
,
J. J. J.
,
Welch
,
B. J.
, and
Voller
,
V. R.
,
1997
, “
Modelling of Dynamic Ledge Heat Transfer
,”
Light Metals: Proceedings of Sessions, TMS Annual Meeting
, Minerals, Metals & Materials Society (TMS), TMS, Orlando, FL, pp.
309
316
.
11.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
,
New York
.
12.
Feng
,
Z.
,
Chen
,
J.
,
Zhang
,
Y.
, and
Griggs
,
J. L.
,
2011
, “
Estimation of Front Surface Temperature and Heat Flux of a Locally Heated Plate From Distributed Sensor Data on the Back Surface
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3431
3439
.
13.
Soti
,
V.
,
Ahmadizadeh
,
Y.
,
Pourgholi
,
R.
, and
Ebrahimi
,
M.
,
2007
, “
Estimation of Heat Flux in One-Dimensional Inverse Heat Conduction Problem
,”
Int. Math. Forum
,
2
(
10
), pp.
455
464
.
14.
Ji
,
C.-C.
,
Tuan
,
P.-C.
, and
Jang
,
H.-Y.
,
1997
, “
A Recursive Least-Squares Algorithm for On-Line 1-D Inverse Heat Conduction Estimation
,”
Int. J. Heat Mass Transfer
,
40
(
9
), pp.
2081
2096
.
15.
Chan
,
Y.
,
Hu
,
A.
, and
Plant
,
J.
,
1979
, “
A Kalman Filter Based Tracking Scheme With Input Estimation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-15
(
2
), pp.
237
244
.
16.
Chen
,
T.-C.
, and
Hsu
,
S.-J.
,
2007
, “
Input Estimation Method in the Use of Electronic Device Temperature Prediction and Heat Flux Inverse Estimation
,”
Numer. Heat Transfer, Part A
,
52
(
9
), pp.
795
815
.
17.
Lu
,
T.
,
Liu
,
B.
,
Jiang
,
P.
,
Zhang
,
Y.
, and
Li
,
H.
,
2010
, “
A Two-Dimensional Inverse Heat Conduction Problem in Estimating the Fluid Temperature in a Pipeline
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1574
1579
.
18.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
19.
Woodbury
,
K. A.
,
Beck
,
J. V.
, and
Najafi
,
H.
,
2014
, “
Filter Solution of Inverse Heat Conduction Problem Using Measured Temperature History as Remote Boundary Condition
,”
Int. J. Heat Mass Transfer
,
72
, pp.
139
147
.
20.
Feng
,
Z.
,
Chen
,
J.
,
Zhang
,
Y.
, and
Montgomery-Smith
,
S.
,
2010
, “
Temperature and Heat Flux Estimation From Sampled Transient Sensor Measurements
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2385
2390
.
21.
Chen
,
T.-C.
, and
Tuan
,
P.-C.
,
2005
, “
Input Estimation Method Including Finite-Element Scheme for Solving Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
47
(
3
), pp.
277
290
.
You do not currently have access to this content.