The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios β=1/3,1/4,and1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0Ri1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Kármán vortex street is seen both at β=1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at β=1/3. For all β, heat transfer increases with increasing Ri. Flattening of Nuavg –Ri curve beyond Ri>0.75 is observed at β=1/3.

References

References
1.
von Karman
,
T.
,
2004
,
Aerodynamics: Selected Topics in the Light of Their Historical Development
,
Dover Publications
,
Mineola, NY
.
2.
Chandra
,
A.
, and
Chhabra
,
R. P.
,
2012
, “
Mixed Convection From a Heated Semi-Circular Cylinder to Power-Law Fluids in the Steady Flow Regime
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
214
234
.
3.
Biswas
,
G.
, and
Sarkar
,
S.
,
2009
, “
Effect of Thermal Buoyancy on Vortex Shedding Past a Circular Cylinder in Cross-Flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1897
1912
.
4.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2011
, “
Effect of Thermal Buoyancy on Vortex Shedding Behind a Square Cylinder in Cross Flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5262
5274
.
5.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2010
, “
Mixed Convective Heat Transfer From Two Identical Square Cylinders in Cross Flow at Re = 100
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2628
2642
.
6.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2011
, “
Unsteady Wake Dynamics and Heat Transfer in Forced and Mixed Convection Past a Circular Cylinder in Cross Flow for High Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3536
3551
.
7.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2012
, “
Mixed Convective Heat Transfer of Nanofluids Past a Circular Cylinder in Cross Flow in Unsteady Regime
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4783
4799
.
8.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transfer
,
59
, pp.
433
450
.
9.
Bhinder
,
A. P. S.
,
Sarkar
,
S.
, and
Dalal
,
A.
,
2012
, “
Flow Over and Forced Convection Heat Transfer Around a Semi-Circular Cylinder at Incidence
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5171
5184
.
10.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2012
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122501
.
11.
Chang
,
K.-S.
, and
Sa
,
J.-Y.
,
1990
, “
The Effect of Buoyancy on Vortex Shedding in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
22
, pp.
253
266
.
12.
Singh
,
S.
,
Biswas
,
G.
, and
Mukhopadhyay
,
A.
,
1998
, “
Effect of Thermal Buoyancy on the Flow Through a Vertical Channel With a Built-In Circular Cylinder
,”
Numer. Heat Transfer, Part A
,
34
(
7
), pp.
769
789
.
13.
De
,
A. K.
, and
Dalal
,
A.
,
2007
, “
Numerical Study of Laminar Forced Convection Fluid Flow and Heat Transfer From a Triangular Cylinder Placed in a Channel
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
646
656
.
14.
De
,
A. K.
, and
Dalal
,
A.
,
2006
, “
Numerical Simulation of Unconfined Flow Past a Triangular Cylinder
,”
Int. J. Numer. Methods Fluids
,
52
(
7
), pp.
801
821
.
15.
Chandra
,
A.
, and
Chhabra
,
R. P.
,
2011
, “
Flow Over and Forced Convection Heat Transfer in Newtonian Fluids From a Semi-Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
225
241
.
16.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders, Fundamentals
, Vol.
1
,
Oxford University Press
,
New York
.
17.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinders, Applications
, Vol.
2
,
Oxford University Press
,
New York
.
18.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Tong
,
J. C. K.
,
2004
, “
Archival Correlations for Average Heat Transfer Coefficients for Non-Circular and Circular Cylinders and for Spheres in Crossflow
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5285
5296
.
19.
Abbassi
,
H.
,
Turki
,
S.
, and
Nasrallah
,
S. B.
,
2001
, “
Mixed Convection in a Plane Channel With a Built-In Triangular Prism
,”
Numer. Heat Transfer, Part A
,
39
(
3
), pp.
307
320
.
20.
Zielinska
,
B. J. A.
, and
Wesfried
,
J. E.
,
1995
, “
On the Spatial Structure of Global Modes in Wake Flow
,”
Phys. Fluids
,
7
(
6
), pp.
1418
1424
.
21.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2014
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Rotating Circular Cylinder
,”
ASME J. Heat Transfer
,
136
(
6
), p.
062501
.
22.
Sarkar
,
S.
,
Ganguly
,
S.
,
Dalal
,
A.
,
Saha
,
P.
, and
Chakraborty
,
S.
,
2013
, “
Mixed Convective Flow Stability of Nanofluids Past a Square Cylinder by Dynamic Mode Decomposition
,”
Int. J. Heat Fluid Flow
,
44
, pp.
624
634
.
23.
Badr
,
H. M.
,
1984
, “
Laminar Combined Convection From a Horizontal Cylinder—Parallel and Contra Flow Regimes
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
15
27
.
24.
Lecordier
,
J. C.
,
Browne
,
L. W. B.
,
Masson
,
S. L.
,
Dumouchel
,
F.
, and
Paranthoen
,
P.
,
2000
, “
Control of Vortex Shedding by Thermal Effect at Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
21
(
4
), pp.
227
237
.
25.
Shi
,
J. M.
,
Gerlach
,
D.
,
Breuer
,
M.
,
Biswas
,
G.
, and
Durst
,
F.
,
2004
, “
Heating Effect on Steady and Unsteady Horizontal Laminar Flow of Air Past a Circular Cylinder
,”
Phys. Fluids
,
16
(
12
), pp.
4331
4345
.
26.
Biswas
,
G.
,
Laschefski
,
H.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1990
, “
Numerical Investigation of Mixed Convection Heat Transfer in a Horizontal Channel With Built-in Square Cylinder
,”
Numer. Heat Transfer A
,
18
(
2
), pp.
173
188
.
27.
Chatterjee
,
D.
, and
Roy
,
S.
,
2014
, “
Influence of Thermal Buoyancy on Boundary Layer Separation Over a Triangular Surface
,”
Int. J. Heat Mass Transfer
,
79
, pp.
769
782
.
28.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2015
, “
Mixed Convection Heat Transfer From an Equilateral Triangular Cylinder in Cross Flow at Low Reynolds Numbers
,”
Heat Transfer Eng.
,
36
(
1
), pp.
123
133
.
29.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2012
, “
Forced Convection Heat Transfer From an Equilateral Triangular Cylinder at Low Reynolds Numbers
,”
Heat Mass Transfer
,
48
(
9
), pp.
1575
1587
.
30.
Niu
,
J.
, and
Zhu
,
Z.
,
2006
, “
Numerical Study of Three-Dimensional Flows Around Two Identical Square Cylinders in Staggered Arrangements
,”
Phys. Fluids
,
18
(
4
), p.
044106
.
31.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davison
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
(
2
), pp.
288
306
.
32.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
,
2003
, “
Three-Dimensional Study of Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
54
66
.
33.
Boussinesq
,
J.
,
1903
,
Theorie Analytique de la Chaleur
, Vol.
2
,
Gauthier Villars
,
Paris
.
34.
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2003
, “
A New Buoyancy Model Replacing the Standard Pseudo-Density Difference for Internal Natural Convection in Gases
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3583
3591
.
35.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.
36.
Dhinakaran
,
S.
,
2011
, “
Heat Transport From a Bluff Body Near a Moving Wall at Re = 100
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5444
5458
.
37.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2004
, “
Shear Flow Past a Square Cylinder Near a Wall
,”
Int. J. Eng. Sci.
,
42
(
19–20
), pp.
2119
2134
.
38.
Bearman
,
P. W.
, and
Zdravkovich
,
M. M.
,
1978
, “
Flow Around a Circular Cylinder Near a Plane Boundary
,”
J. Fluid Mech.
,
89
(
1
), pp.
33
47
.
39.
Dulhani
,
P. J.
,
Sarkar
,
S.
, and
Dalal
,
A.
,
2014
, “
Effect of Angle of Incidence on Mixed Convective Wake Dynamics and Heat Transfer Past a Square Cylinder in Cross Flow at Re = 100
,”
Int. J. Heat Mass Transfer
,
74
, pp.
319
332
.
You do not currently have access to this content.