In multiphase modeling of fluidized beds, pulverized coal combustors, spray combustors, etc., where different temperatures for gas and solid phases are considered, the governing equations result in separate energy equations for each phase. For high-temperature applications, where radiation is a significant mode of heat transfer, accurately predicting the radiative source terms across each individual phase is an essential task. A spectral photon Monte Carlo (PMC) method is presented here with detailed description of the implementation features, including the spectral treatment of solid particles, random number correlations, and a scheme to split emission and absorption across phases. Numerical results from the PMC method are verified against direct numerical integration of the radiative transfer equation (RTE), for example, problems including a cylindrically enclosed homogeneous gas–particulate medium and a simple fluidized bed example. The PMC method is then demonstrated on a snapshot of a pulverized-coal combustion simulation.

References

References
1.
von Zedtwitz
,
P.
, and
Steinfeld
,
A.
,
2005
, “
Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation—Modeling and Experimental Validation
,”
Ind. Eng. Chem. Res
,
44
(
11
), pp.
3852
3861
.
2.
Consalvi
,
J.
,
Porterie
,
B.
, and
Loraud
,
J.
,
2002
, “
A Formal Averaging Procedure for Radiation Heat Transfer in Particulate Media
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2755
2768
.
3.
Lipiński
,
W.
,
Petrasch
,
J.
, and
Haussener
,
S.
,
2010
, “
Application of the Spatial Averaging Theorem to Radiative Heat Transfer in Two-Phase Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
1
), pp.
253
258
.
4.
Lipiński
,
W.
,
Keene
,
D.
,
Haussener
,
S.
, and
Petrasch
,
J.
,
2010
, “
Continuum Radiative Heat Transfer Modeling in Media Consisting of Optically Distinct Components in the Limit of Geometrical Optics
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
16
), pp.
2474
2480
.
5.
Petrasch
,
J.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2011
, “
Discrete vs. Continuum-Scale Simulation of Radiative Transfer in Semitransparent Two-Phase Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
9
), pp.
1450
1459
.
6.
Hodkinson
,
J. R.
,
1963
, “
Light Scattering and Extinction by Irregular Particles Larger Than the Wavelength
,”
Electromagnetic Scattering
,
M.
Kerker
, ed.,
Macmillan
,
New York
, pp.
87
100
.
7.
Lee
,
S. C.
,
1986
, “
Radiative Transfer Through a Fibrous Medium: Allowance for Fiber Orientation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
36
(
3
), pp.
253
263
.
8.
Singh
,
B. P.
, and
Kaviany
,
M.
,
1991
, “
Independent Theory Versus Direct Simulation of Radiation Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2869
2882
.
9.
Singh
,
R. I.
,
Brink
,
A.
, and
Hupa
,
M.
,
2013
, “
CFD Modeling to Study Fluidized Bed Combustion and Gasification
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
585
614
.
10.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
3rd ed.
,
Academic
,
New York
.
11.
Cai
,
J.
, and
Modest
,
M. F.
,
2012
, “
Absorption Coefficient Regression Scheme for Splitting Radiative Heat Sources Across Phases in Gas–Particulate Mixtures
,”
Powder Tech.
,
265
, pp.
76
82
.
12.
von Zedtwitz
,
P.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2007
, “
Numerical and Experimental Study of Gas–Particle Radiative Heat Exchange in a Fluidized-Bed Reactor for Steam-Gasification of Coal
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
599
607
.
13.
Adzeriho
,
K.
,
Nogotov
,
E. F.
, and
Trofimov
,
V. P.
,
1993
,
Radiative Heat Transfer in Two-Phase Media
,
CRC Press
,
Boca Raton, FL
.
14.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
,
New York
.
15.
Snegirev
,
A. Y.
,
2004
, “
Statistical Modeling of Thermal Radiation Transfer in Buoyant Turbulent Diffusion Flames
,”
Combust. Flame
,
136
(
1–2
), pp.
51
71
.
16.
Tessé
,
L.
,
Duporieux
,
F.
,
Zamuner
,
B.
, and
Taine
,
J.
,
2002
, “
Radiative Transfer in Real Gases Using Reciprocal and Forward Monte Carlo Methods and a Correlated-k Approach
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2797
2814
.
17.
Tessé
,
L.
,
Duporieux
,
F.
,
Zamuner
,
B.
, and
Taine
,
J.
,
2004
, “
Monte Carlo Modeling of Radiative Transfer in a Turbulent Sooty Flame
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
555
572
.
18.
Wang
,
A.
, and
Modest
,
M. F.
,
2006
, “
Photon Monte Carlo Simulation for Radiative Transfer in Gaseous Media Represented by Discrete Particle Fields
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1041
1049
.
19.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
An Adaptive Emission Model for Monte Carlo Ray-Tracing in Participating Media Represented by Statistical Particle Fields
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
2
), pp.
288
296
.
20.
Xia
,
X. L.
,
Ren
,
D. P.
, and
Tan
,
H. P.
,
2006
, “
A Curve Monte Carlo Method for Radiative Heat Transfer in Absorbing and Scattering Gradient-Index Medium
,”
Numer. Heat Transfer, Part B
,
50
(
2
), pp.
181
192
.
21.
Ruan
,
L. M.
,
Tan
,
H. P.
, and
Yan
,
Y. Y.
,
2002
, “
A Monte Carlo (MC) Method Applied to the Medium With Nongray Absorbing–Emitting-Anisotropic Scattering Particles and Gray Approximation
,”
Numer. Heat Transfer, Part A
,
42
(
2
), pp.
253
268
.
22.
Mazumdar
,
S.
, and
Kersch
,
A.
,
2000
, “
A Fast Monte Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications
,”
Numer. Heat Transfer, Part B
,
37
(
2
), pp.
185
199
.
23.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3877
3889
.
24.
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases
,”
ASME J. Heat Transfer
,
135
(
8
), p.
084501
.
25.
Mehta
,
R. S.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2010
, “
Composition PDF/Photon Monte Carlo Modeling of Moderately Sooting Turbulent Jet Flames
,”
Combust. Flame
,
157
(
5
), pp.
982
994
.
26.
Feldick
,
A. M.
, and
Modest
,
M. F.
,
2012
, “
A Spectrally Accurate Tightly-Coupled 2-D Axisymmetric Photon Monte Carlo RTE Solver for Hypersonic Entry Flows
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122701
.
27.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
3rd ed.
,
Academic Press
,
New York
.
28.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Doth
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Prevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.
29.
Buckius
,
R. O.
, and
Hwang
,
D. C.
,
1980
, “
Radiation Properties for Polydispersions: Application to Coal
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
99
103
.
30.
Feldick
,
A. M.
, and
Modest
,
M. F.
,
2011
, “
An Improved Wavelength Selection Scheme for Monte Carlo Solvers Applied to Hypersonic Plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
8
), pp.
1394
1401
.
31.
Cai
,
J.
,
Masato
,
H.
, and
Modest
,
M. F.
,
2014
, “
Eulerian–Eulerian Multi-Fluid Methods for Pulverized Coal Flames With Nongray Radiation
,”
Combust. Flame
,
162
(
4
), pp.
1550
1565
.
32.
Hwang
,
S. M.
,
Kurose
,
R.
,
Akamatsu
,
F.
,
Tsuji
,
H.
,
Makino
,
H.
, and
Katsuki
,
M.
,
2005
, “
Application of Optical Diagnostics Techniques to a Laboratory-Scale Turbulent Pulverized Coal Flame
,”
Energy Fuels
,
19
(
2
), pp.
382
392
.
33.
Magnussen
,
B. F.
,
2005
, “
The Eddy Dissipation Concept: A Bridge Between Science and Technology
,”
ECCOMAS Thematic Conference on Computational Combustion
, Lisbon, Portugal, June 21–24.
34.
Ubhayakar
,
S. K.
,
Stickler
,
D. B.
,
von Rosenberg
,
C. W.
, Jr.
, and
Gannon
,
R. E.
,
1977
, “
Rapid Devolatilization of Pulverized Coal in Hot Combustion Gases
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
427
436
.
35.
Hamor
,
R. J.
,
Smith
,
I. W.
, and
Tyler
,
R. J.
,
1973
, “
Kinetics of Combustion of a Pulverized Brown Coal Char Between 630 and 2200 K
,”
Combust. Flame
,
21
(
2
), pp.
153
162
.
36.
Syamlal
,
M.
,
Rodgers
,
W.
, and
O'Brien
,
T.
,
1993
, “
MFIX Documentation: Theory Guide
,” U.S. Department of Energy, Office of Fossil Energy, Morgantown, WV, Technical Note No.
DOE
/METC-94/1004.
37.
Cai
,
J.
, and
Modest
,
M. F.
,
2013
, “
Improved Full-Spectrum k-Distribution Implementation for Inhomogeneous Media Using a Narrow-Band Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
141
, pp.
65
72
.
38.
Wang
,
A.
,
Modest
,
M. F.
,
Haworth
,
D. C.
, and
Wang
,
L.
,
2008
, “
Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
269
279
.
39.
Cai
,
J.
,
Marquez
,
R.
,
Masato
,
H.
, and
Modest
,
M. F.
,
2013
, “
Comparisons of Radiative Heat Transfer Calculations in a Jet Diffusion Flame Using Spherical Harmonics and k-Distributions
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112702
.
40.
Ge
,
W.
,
Marquez
,
R.
,
Modest
,
M. F.
, and
Roy
,
S. P.
,
2015
, “
Implementation of High Order Spherical Harmonics Methods for Radiative Heat Transfer on OpenFOAM
,”
ASME J. Heat Transfer
,
137
(
5
), p.
052701
.
You do not currently have access to this content.