In this study, an inverse heat transfer problem of parameter estimation using Bayesian inference is considered. Single parameter (specific heat of solid material) estimation as well as simultaneous estimation of two parameters (specific heat and emissivity) is done using a methodology combining the Bayesian inference with Markov chain Monte Carlo (MCMC) based sampling method. Computation of posterior probability density function (PPDF), using Bayes formula, is central to the inverse determination of parameters using Bayesian inference approach. Maximum-a-posteriori (MAP) and posterior mean are used to report the values of the estimated parameters and the uncertainties in the estimated parameters are characterized by the variance of the PPDF. The estimated value of specific heat and emissivity is well in agreement with reported value in literature.

References

References
1.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley Interscience
,
New York
.
2.
Ozisik
,
M. N.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
CRC Press
,
New York
.
3.
Raudenský
,
M.
,
Woodbury
,
K. A.
,
Kral
,
J.
, and
Brezina
,
T.
,
1995
, “
Genetic Algorithm in Solution of Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
28
(
3
), pp.
293
306
.
4.
Michalewicz
,
Z.
,
1996
,
Genetic Algorithms + Data Structures = Evolution Programs
,
Springer
,
New York
.
5.
Verma
,
S.
, and
Balaji
,
C.
,
2007
, “
Multi-Parameter Estimation in Combined Conduction–Radiation From a Plane Parallel Participating Medium Using Genetic Algorithms
,”
Int. J. Heat Mass Transfer
,
50
(
9
), pp.
1706
1714
.
6.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
52
(
9
), pp.
2169
2188
.
7.
Ding
,
P.
,
2012
, “
Solution of Inverse Convection Heat Transfer Problem Using an Enhanced Particle Swarm Optimization Algorithm
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011702
.
8.
Sawaf
,
B.
,
Ozisik
,
M.
, and
Jarny
,
Y.
,
1995
, “
An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic Medium
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3005
3010
.
9.
Huang
,
C.-H.
, and
Jan-Yuan
,
Y.
,
1995
, “
An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3433
3441
.
10.
Yang
,
C.-Y.
,
2000
, “
Determination of the Temperature Dependent Thermophysical Properties From Temperature Responses Measured at Mediums Boundaries
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1261
1270
.
11.
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2006
, “
Comparison of Various Methods for Simultaneous Retrieval of Surface Emissivities and Gas Properties in Grey Participating Media
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
829
837
.
12.
Venugopal
,
G.
,
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2008
, “
Simultaneous Retrieval of Total Hemispherical Emissivity and Specific Heat From Transient Multimode Heat Transfer Experiments
,”
ASME J. Heat Transfer
,
130
(
6
), p.
061601
.
13.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17
), pp.
3927
3941
.
14.
Wang
,
J.
, and
Zabaras
,
N.
,
2005
, “
Using Bayesian Statistics in the Estimation of Heat Source in Radiation
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
15
29
.
15.
Parthasarathy
,
S.
, and
Balaji
,
C.
,
2008
, “
Estimation of Parameters in Multi-Mode Heat Transfer Problems Using Bayesian Inference–Effect of Noise and a Priori
,”
Int. J. Heat Mass Transfer
,
51
(
9
), pp.
2313
2334
.
16.
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2011
, “
A Bayesian Approach for the Simultaneous Estimation of Surface Heat Transfer Coefficient and Thermal Conductivity From Steady State Experiments on Fins
,”
Int. J. Heat Mass Transfer
,
54
(
13
), pp.
3060
3068
.
17.
Eckert
,
E. R.
, and
Goldstein
,
R. J.
,
1976
,
Measurements in Heat Transfer
,
Taylor & Francis
,
New York
.
18.
Fu
,
T.
, and
Tan
,
P.
,
2012
, “
Transient Calorimetric Measurement Methods for Total Hemispherical Emissivity
,”
ASME J. Heat Transfer
,
134
(
11
), pp.
11601
11607
.
19.
Sasaki
,
S.
,
Masuda
,
H.
,
Higano
,
M.
, and
Hishinuma
,
N.
,
1994
, “
Simultaneous Measurements of Specific Heat and Total Hemispherical Emissivity of Chromel and Alumel by a Transient Calorimetric Technique
,”
Int. J. Thermophys.
,
15
(
3
), pp.
547
565
.
20.
Matsumoto
,
T.
, and
Ono
,
A.
,
2001
, “
Hemispherical Total Emissivity and Specific Heat Capacity Measurements by Electrical Pulse-Heating Method With a Brief Steady State
,”
Meas. Sci. Technol.
,
12
(
12
), p.
2095
.
21.
Tanda
,
G.
, and
Misale
,
M.
,
2006
, “
Measurement of Total Hemispherical Emittance and Specific Heat of Aluminum and Inconel 718 by a Calorimetric Technique
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
302
306
.
22.
Beck
,
J.
,
Blackwell
,
B.
, and
St Clair
,
C.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley-Interscience
,
New York
.
23.
Besag
,
J.
,
Green
,
P.
,
Higdon
,
D.
, and
Mengersen
,
K.
,
1995
, “
Bayesian Computation and Stochastic Systems
,”
Stat. Sci.
,
10
(
1
), pp.
3
41
.
24.
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
25.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.
26.
Beck
,
J.
,
Blackwell
,
B.
, and
Haji-Sheikh
,
A.
,
1996
, “
Comparison of Some Inverse Heat Conduction Methods Using Experimental Data
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3649
3657
.
27.
Alifanov
,
O. M.
, and
Alifanov
,
O. M.
,
1994
,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
Berlin
.
28.
Tikhonov
,
A. N.
,
Arsenin
,
V. I.
, and
John
,
F.
,
1977
,
Solutions of Ill-Posed Problems
,
Winston
,
Washington, D.C
.
29.
Emery
,
A.
,
2001
, “
Stochastic Regularization for Thermal Problems With Uncertain Parameters
,”
Inverse Probl. Eng.
,
9
(
2
), pp.
109
125
.
30.
Andrieu
,
C.
,
De Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learn.
,
50
(
1–2
), pp.
5
43
.
31.
Gilks
,
W.
,
Richardson
,
S.
, and
Spiegelhalter
,
D.
,
1996
,
Markov Chain Monte Carlo in Practice
, Vol.
486
,
Chapman and Hall
,
New York
.
32.
Beichl
,
I.
, and
Sullivan
,
F.
,
2000
, “
The Metropolis Algorithm
,”
Comput. Sci. Eng.
,
2
(
1
), pp.
65
69
.
33.
Kaye
,
G. W. C.
, and
Laby
,
T. H.
,
1921
,
Tables of Physical and Chemical Constants: and Some Mathematical Functions
,
Longmans
,
London
.
34.
Singham
,
J.
,
1962
, “
Tables of Emissivity of Surfaces
,”
Int. J. Heat Mass Transfer
,
5
(
1
), pp.
67
76
.
You do not currently have access to this content.