The present investigation reports the rewetting phenomenon by bottom flooding in vertical pipes using both water and nanofluid as coolant. The transient temperature response of rewetted surface indicates that rewetting takes place faster in nanofluids than in water. The effect of several parameters, including the coolant flow rate, distance from the inlet of fluid, concentration of nanoparticle loading on the rewetting characteristics, has been investigated. The rewetting velocity, for both water and nanofluid, is observed to depend strongly on the inlet coolant flow rate and initial wall temperature of the tube. The rewetting velocity is observed to follow the correlation for water proposed in an earlier work. Starting from the logic proposed in that previous report, the authors propose a correlation for predicting the rewetting velocity in nanofluids.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
International Mechanical Engineering Congress and Exposition
, San Francisco, CA, pp.
12
47
.
2.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
265
274
.
3.
Liu
,
Z.-H.
,
Yang
,
X.-F.
, and
Xiong
,
J.-G.
,
2010
, “
Boiling Characteristics of Carbon Nanotube Suspensions Under Sub-Atmospheric Pressures
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1156
1164
.
4.
Sawan
,
M. E.
, and
Carbon
,
M. W.
,
1975
, “
A Review of Spray-Cooling and Bottom-Flooding
,”
32
(
2
), pp.
191
207
.
5.
Elias
,
E.
, and
Yadigaroglu
,
G.
,
1978
, “
The Reflooding Phase of LOCA in PWRs, Part II, Rewetting and Liquid Entrainment
,”
Nucl. Saf.
,
19
, pp.
160
175
.
6.
Saxena
,
A. K.
,
Venkat Raj
,
V.
, and
Govardhana Rao
,
V.
,
2001
, “
Experimental Studies on Rewetting of Hot Vertical Annular Channel
,”
Nucl. Eng. Des.
,
208
(
3
), pp.
283
303
.
7.
Lee
,
S. W.
,
Chun
,
S. Y.
,
Song
,
C. H.
, and
Bang
,
I. C.
,
2012
, “
Effect of Nanofluids on Reflood Heat Transfer in a Long Vertical Tube
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4766
4771
.
8.
Yu
,
S. K. W.
,
Farmer
,
P. R.
, and
Coney
,
M. W. E.
,
1977
, “
Methods and Correlations for the Prediction of Quenching Rates on Hot Surfaces
,”
Int. J. Multiphase Flow
,
3
(
5
), pp.
415
443
.
9.
Carbajo
,
J. J.
, and
Siegel
,
A. D.
,
1980
, “
Review and Comparison Among the Different Models for Rewetting in LWR's
,”
Nucl. Eng. Des.
,
58
(
1
), pp.
33
44
.
10.
Iloeje
,
O. C.
,
Plummer
,
D. N.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1982
, “
Effect of Mass Flux, Flow Quality, Thermal and Surface Properties of Materials on Rewet of Dispersed Flow Film Boiling
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
304
308
.
11.
Lee
,
Y.
, and
Shen
,
W.-Q.
,
1987
, “
Effect of Surface Roughness on the Rewetting Process
,”
Int. J. Multiphase Flow
,
13
(
6
), pp.
857
861
.
12.
Olek
,
S.
, and
Zvirin
,
Y.
,
1988
, “
The Relation Between the Rewetting Temperature and the Liquid–Solid Contact Angle
,”
Int. J. Heat Mass Transfer
,
31
(
4
), pp.
898
902
.
13.
Carbajo
,
J. J.
,
1985
, “
A Study on the Rewetting Temperature
,”
Nucl. Eng. Des.
,
84
(
1
), pp.
21
52
.
14.
Lee
,
Y.
, and
Shen
,
W.-Q.
,
1985
, “
Effect of Coolant Vapor Quality on Rewetting Phenomena
,”
Int. J. Heat Mass Transfer
,
28
(
1
), pp.
139
146
.
15.
Sahu
,
S. K.
,
Das
,
P. K.
, and
Bhattacharyya
,
S.
,
2008
, “
Rewetting Analysis of Hot Vertical Surfaces With Precursory Cooling by the Heat Balance Integral Method
,”
ASME J. Heat Transfer
,
130
(
2
), p.
024504
.
16.
Sahu
,
S. K.
,
Das
,
P. K.
, and
Bhattacharyya
,
S.
,
2010
, “
An Experimental Investigation on the Quenching of a Hot Vertical Heater by Water Injection at High Flow Rate
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1558
1568
.
17.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
18.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2006
, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
5070
5074
.
19.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.
20.
Xuan
,
Y.
,
Li
,
Q.
, and
Tie
,
P.
,
2013
, “
The Effect of Surfactants on Heat Transfer Feature of Nanofluids
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
259
262
.
21.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
,
2007
, “
Pool Boiling Heat Transfer Characteristics of ZrO2–Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
,
44
(
8
), pp.
999
1004
.
22.
Ciloglu
,
D.
, and
Bolukbasi
,
A.
,
2011
, “
The Quenching Behavior of Aqueous Nanofluids Around Rods With High Temperature
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2519
2527
.
23.
Babu
,
K.
, and
Prasanna Kumar
,
T. S.
,
2011
, “
Estimation and Analysis of Surface Heat Flux During Quenching in CNT Nanofluids
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071501
.
24.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
3783
3788
.
25.
Chun
,
S.-Y.
,
Bang
,
I. C.
,
Choo
,
Y.-J.
, and
Song
,
C.-H.
,
2011
, “
Heat Transfer Characteristics of Si and SiC Nanofluids During a Rapid Quenching and Nanoparticles Deposition Effects
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1217
1223
.
26.
Zhu
,
D.
,
Li
,
X.
,
Wang
,
N.
,
Wang
,
X.
,
Gao
,
J.
, and
Li
,
H.
,
2009
, “
Dispersion Behavior and Thermal Conductivity Characteristics of Al2O3–H2O Nanofluids
,”
Curr. Appl. Phys.
,
9
(
1
), pp.
131
139
.
27.
Ho
,
C. J.
,
Huang
,
J. B.
,
Tsai
,
P. S.
, and
Yang
,
Y. M.
,
2011
, “
Water-Based Suspensions of Al2O3 Nanoparticles and MEPCM Particles on Convection Effectiveness in a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
736
748
.
28.
Ueda
,
T.
, and
Inoue
,
M.
,
1984
, “
Rewetting of a Hot Surface by a Falling Liquid Film-Effects of Liquid Subcooling
,”
Int. J. Heat Mass Transfer
,
27
(
7
), pp.
999
1005
.
29.
Dua
,
S. S.
, and
Tien
,
C. L.
,
1978
, “
An Experimental Falling-Film Rewetting
,”
Int. J. Heat Mass Transfer
,
21
(
7
), pp.
955
965
.
30.
Zhang
,
J.
,
Tanaka
,
F.
,
Juarsa
,
M.
, and
Mishima
,
K.
,
2003
, “
Calculation of Boiling Curves During Rewetting of a Hot Vertical Narrow Channel
,”
International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Seoul, pp.
1
14
.
31.
Taylor
,
R.
,
Coulombe
,
S.
,
Otanicar
,
T.
,
Phelan
,
P.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
R.
, and
Tyagi
,
H.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
J. Appl. Phys.
,
113
(
1
), p.
011301
.
32.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.
33.
Ueda
,
T.
,
Tsunenari
,
S.
, and
Koyanagi
,
M.
,
1983
, “
An Investigation of Critical Heat Flux and Surface Rewet in Flow Boiling Systems
,”
Int. J. Heat Mass Transfer
,
26
(
8
), pp.
1189
1198
.
34.
Chan
,
A. M. C.
, and
Banerjee
,
S.
,
1981
, “
Refilling and Rewetting of a Hot Horizontal Tube—Part 1: Experiments
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
281
286
.
You do not currently have access to this content.