Hydrogen release in confined spaces is an important safety issue, which is even more important in the context of severe accident in nuclear reactors. In severe accidents, hydrogen release is associated with release of steam and the condensation of steam on walls leads to increase in concentration of hydrogen in residual gas as well as condensation induced mixing. In the present paper, a model for falling film steam condensation in the presence of noncondensable gases is presented. The steam condensation model is incorporated into an in-house developed cfd code called hydrogen distribution simulator (HDS) and is used for hydrogen distribution studies. The validation of the CFD model with steam condensation against the experimental results from the CONAN facility is discussed. Subsequently, the model is applied to a typical release situation involving release of hydrogen and steam for some time and its distribution for a long time beyond it. The heat and mass transfer aspects of the problem are highlighted. It is seen that steam condensation has an important bearing on the distribution of hydrogen and the mixing behavior of gases in the enclosure.

References

References
1.
Agrawal
,
N.
,
Prabhakar
,
A.
, and
Das
,
S. K.
,
2014
, “
Hydrogen Distribution in Nuclear Reactor Containment During Accidents and Associated Heat and Mass Transfer Issues—A Review
,”
Heat Transfer Eng.
,
36
(
10
), pp.
859
879
.
2.
Karwat
,
H.
,
Bardelay
,
J.
,
Hashioto
,
T.
,
Koroll
,
G. W.
,
Krause
,
M.
,
Heriteau
,
J. P.
,
Lundstrom
,
P.
,
Notafrancesco
,
A.
,
Royl
,
P.
,
Schwinges
,
B.
,
Tezuka
,
H.
, and
Tills
,
J.
,
1999
, “
State-of-Art Report on Containment Thermal Hydraulics and Hydrogen Distribution
,” Technical Report No. NEA/CSNI/R(99)16, CSNI, Nuclear Energy Agency.
3.
Allelein
,
H. J.
,
Fischer
,
K.
,
Vendel
,
J.
,
Malet
,
J.
,
Studer
,
E.
,
Schwarz
,
E.
,
Houkema
,
M.
,
Paillere
,
H.
, and
Bentaib
,
A.
,
2007
, “
International Standard Problem ISP-47 on Containment Thermal Hydraulics
,” Technical Report No. NEA/CSNI/R(2007)10, CSNI, Nuclear Energy Agency.
4.
Malet
,
J.
,
Porcheron
,
E.
, and
Vendel
,
J.
,
2010
, “
OECD International Standard Problem ISP-47 on Containment Thermal-Hydraulics—Conclusions of the TOSQAN Part
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3209
3220
.
5.
Martín-Valdepeñas
,
J. M.
,
Jiménez
,
M. A.
,
Martín-Fuertes
,
F.
, and
Fernández
,
J. A.
,
2007
, “
Improvements in a CFD Code for Analysis of Hydrogen Behaviour Within Containments
,”
Nucl. Eng. Des.
,
237
(
6
), pp.
627
647
.
6.
Carbajo
,
J. J.
,
1981
, “
Heat Transfer Coefficients Under LOCA Conditions in Containment Buildings
,”
Nucl. Eng. Des.
,
65
(
3
), pp.
369
386
.
7.
Collier
,
J. G.
,
1972
,
Convective Boiling and Condensation
,
McGraw-Hill
,
London
, pp.
314
359
.
8.
Nusselt
,
W.
,
1916
, “
The Surface Condensation of Water Vapour
,”
Z. Ver. Deutescher Ing.
,
60
, pp.
541
546
.
9.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1964
, “
Condensation Heat Transfer in the Presence of a Non-Condensable Gas
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
430
436
.
10.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
1966
, “
Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties and Diffusion
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1125
1144
.
11.
Kudriakov
,
S.
,
Dabbene
,
F.
,
Studer
,
E.
,
Beccantini
,
A.
,
Magnaud
,
J. P.
,
Paillere
,
H.
,
Bentaib
,
A.
,
Bleyer
,
A.
,
Malet
,
J.
,
Porcheron
,
E.
, and
Caroli
,
C.
,
2008
, “
The TONUS CFD Code for Hydrogen Risk Analysis: Physical Models, Numerical Schemes and Validation Matrix
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
551
565
.
12.
Colburn
,
A. P.
,
1934
, “
Calculation of Condensation With a Portion of Condensate Layer in Turbulent Motion
,”
Ind. Eng. Chem.
,
26
(
4
), pp.
432
434
.
13.
Incropera
,
F. P.
, and
DeWitt
,
D.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
, pp.
556
564
.
14.
Chapman
,
A. J.
,
1984
,
Transmisión del Calor
,
3rd ed.
,
Bellisco
,
Madrid
, pp.
410
426
.
15.
Butterworth
,
D.
,
1981
, “
Inundation Without Vapour Shear
,”
Power Condenser Heat Transfer Technology
,
P. J.
Marto
and
R. H.
Nunn
, eds.,
Hemisphere
,
New York
.
16.
Terasaka
,
H.
, and
Makita
,
A.
,
1997
, “
Numerical Analysis of the PHEBUS Containment Thermal Hydraulics
,”
J. Nucl. Sci. Technol.
,
34
(
7
), pp.
666
678
.
17.
Henderson
,
C. L.
, and
Marchello
,
J. M.
,
1969
, “
Film Condensation in the Presence of a Noncondensable Gas
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
447
450
.
18.
Agrawal
,
N.
,
Velusamy
,
K.
, and
Das
,
S. K.
,
2013
, “
A Study on the Scaling Features for Mixing and Deflagration Potential of Stratified Layer of Hydrogen Due to Molecular Diffusion
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
28
33
.
19.
Agrawal
,
N.
,
Velusamy
,
K.
, and
Das
,
S. K.
,
2011
, “
A Method to Characterize Mixing and Flammability of Hydrogen Air Mixtures in Enclosures
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12607
12617
.
20.
Agrawal
,
N.
, and
Das
,
S. K.
,
2013
, “
Numerical Indices for Quantification of Mixing and Deflagration Potential of Hydrogen in Nuclear Reactor Containment
,”
Nucl. Eng. Des.
,
259
, pp.
137
149
.
21.
Agrawal
,
N.
,
2013
, “
Studies on Mixing and Deflagration Potential of Hydrogen-Air and Hydrogen-Steam-Air Distributions in Enclosures
,” Ph.D thesis, Indian Institute of Technology Madras, Chennai, India.
22.
Henkes
,
R. A. W. M.
, and
Hoogendoorn
,
C. J.
,
1995
, “
Comparison Exercise for Computation of Turbulent Natural Convection in Enclosures
,”
Numer. Heat Transfer, Part B
,
28
(
1
), pp.
59
78
.
23.
Velusamy
,
K.
,
Sundararajan
,
T.
, and
Seetharamu
,
K. N.
,
2001
, “
Interaction Effects Between Surface Radiation and Turbulent Natural Convection in Square and Rectangular Enclosures
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1062
1070
.
24.
Bird
,
R. B.
,
Stewart
,
W.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
25.
Turns
,
S. R.
,
1999
,
An Introduction to Combustion: Concepts and Applications
,
2nd ed.
,
McGraw-Hill Higher Education
,
New York
.
26.
Agrawal
,
N.
,
2009
, “
Finite Volume Code HDS: Development and Validation
,” Technical Report No. AERB/SRI/2009/5002, Safety Research Institute, Atomic Energy Regulatory Board, India.
27.
Lawrence
,
M. G.
,
2005
, “
The Relationship Between Relative Humidity and the Dew Point Temperature in Moist Air—A Simple Conversion and Applications
,”
Am. Meteorol. Soc.
,
8
(
2
), pp.
225
233
.
28.
Ambrosini
,
W.
,
Bucci
,
M.
,
Forgione
,
N.
,
Oriolo
,
F.
,
Paci
,
S.
,
Magnaud
,
J. P.
,
Studer
,
E.
,
Reinecke
,
E.
,
Kelm
,
S.
,
Jahn
,
W.
,
Travis
,
J.
,
Wilkening
,
H.
,
Heithsch
,
M.
,
Kljenak
,
I.
,
Babic
,
M.
,
Houkema
,
M.
,
Visser
,
D. C.
,
Vyskocil
,
L.
,
Kostka
,
P.
, and
Huhtanen
,
R.
,
2008
, “
Comparison and Analysis of the Condensation Benchmark Results
,”
3rd European Review Meeting on Severe Accident Research (ERMSAR-2008)
, Nesseber, Bulgaria.
You do not currently have access to this content.