The immersed boundary method (IBM) was used for three-dimensional numerical simulations, and the results for natural convection in a rectangular channel with an inner hot circular cylinder are presented. This simulation used Rayleigh numbers spanning 3 orders of magnitude, from 1×103 to 1×106. The Prandtl number considered in this study was 0.7. We investigated the effects of the inner cylinder's radius on the thermal convection and heat transfer in the space between the cylinder and rectangular channel. A map of the thermal and flow regimes is presented as a function of the cylinder's radius and the Rayleigh number.

References

References
1.
Lipps
,
F. B.
,
1976
, “
Numerical Simulation of Three-Dimensional Bénard Convection in Air
,”
J. Fluid Mech.
,
75
(
1
), pp.
113
148
.
2.
Ozoe
,
H.
,
Yamamoto
,
K.
,
Churchill
,
S. W.
, and
Sayama
,
H.
,
1976
, “
Three-Dimensional, Numerical Analysis of Laminar Natural Convection in a Confined Fluid Heated From Below
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
202
207
.
3.
Richter
,
F. M.
,
1978
, “
Experiments on the Stability of Convection Rolls in Fluids Whose Viscosity Depends on Temperature
,”
J. Fluid Mech.
,
89
(
3
), pp.
553
560
.
4.
Busse
,
F. H.
, and
Clever
,
R. M.
,
1979
, “
Instabilities of Convection Rolls in a Fluid of Moderate Prandtl Number
,”
J. Fluid Mech.
,
91
(
2
), pp.
319
335
.
5.
Grotzbach
,
G.
,
1983
, “
Spatial Resolution Requirements for Direct Numerical Simulation of the Rayleigh–Bénard Convection
,”
J. Comput. Phys.
,
49
(
2
), pp.
241
264
.
6.
Kerr
,
R. M.
,
1996
, “
Rayleigh Number Scaling in Numerical Convection
,”
J. Fluid Mech.
,
310
, pp.
139
179
.
7.
Hartlep
,
T.
,
Tilgner
,
A.
, and
Busse
,
F. H.
,
2005
, “
Transition to Turbulent Convection in a Fluid Layer Heated From Below at Moderate Aspect Ratio
,”
J. Fluid Mech.
,
554
, pp.
309
322
.
8.
Bailon-Cuba
,
J.
, and
Schumacher
,
J.
,
2011
, “
Low-Dimensional Model of Turbulent Rayleigh–Bénard Convection in a Cartesian Cell With Square Domain
,”
Phys. Fluids
,
23
(
7
), p.
077101
.
9.
Moukalled
,
F.
, and
Acharya
,
S.
,
1996
, “
Natural Convection in the Annulus Between Concentric Horizontal Circular and Square Cylinders
,”
J. Thermophys. Heat Transfer
,
10
(
3
), pp.
524
531
.
10.
Ha
,
M. Y.
,
Kim
,
I.
,
Yoon
,
H. S.
,
Yoon
,
K. S.
,
Lee
,
J. R.
,
Balachandar
,
S.
, and
Chun
,
H. H.
,
2002
, “
Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure With a Square Body
,”
Numer. Heat Transfer, Part A
,
41
(
1
), pp.
183
210
.
11.
Lee
,
J. R.
,
Ha
,
M. Y.
,
Balachandar
,
S.
,
Yoon
,
H. S.
, and
Lee
,
S. S.
,
2004
, “
Natural Convection in a Horizontal Layer of Fluid With a Periodic Array of Square Cylinders in the Interior
,”
Phys. Fluids
,
16
(
4
), pp.
1097
1117
.
12.
Lee
,
J. R.
,
Ha
,
M. Y.
, and
Balachandar
,
S.
,
2007
, “
Natural Convection in a Horizontal Fluid Layer With a Periodic Array of Internal Square Cylinders—Need for Very Large Aspect Ratio 2D Domains
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
978
987
.
13.
Lee
,
J. R.
, and
Ha
,
M. Y.
,
2005
, “
A Numerical Study of Natural Convection in a Horizontal Enclosure With a Conducting Body
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3308
3318
.
14.
Lee
,
J. R.
, and
Ha
,
M. Y.
,
2006
, “
Numerical Simulation of Natural Convection in a Horizontal Enclosure With a Heat-Generating Conducting Body
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2684
2702
.
15.
Angeli
,
D.
,
Levoni
,
P.
, and
Barozzi
,
G. S.
,
2008
, “
Numerical Predictions for Stable Buoyant Regimes Within a Square Cavity Containing a Heated Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
553
565
.
16.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study on Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1888
1906
.
17.
Yoon
,
H. S.
,
Ha
,
M. Y.
,
Kim
,
B. S.
, and
Yu
,
D. H.
,
2009
, “
Effect of the Position of a Circular Cylinder in a Square Enclosure on Natural Convection at Rayleigh Number of 107
,”
Phys. Fluids
,
21
(
4
), p.
047101
.
18.
Kang
,
D. H.
,
Ha
,
M. Y.
,
Yoon
,
H. S.
, and
Choi
,
C.
,
2013
, “
Bifurcation to Unsteady Natural Convection in Square Enclosure With a Circular Cylinder at Rayleigh Number of 107
,”
Int. J. Heat Mass Transfer
,
64
, pp.
926
944
.
19.
Stevens
,
R. J. A. M.
,
Lohse
,
D.
, and
Verzicco
,
R.
,
2011
, “
Prandtl Number Dependence of Heat Transport in High Rayleigh Number Thermal Convection
,”
J. Fluid Mech.
,
688
, pp.
1
13
.
20.
Chan
,
A. M. C.
, and
Banerjee
,
S.
,
1979
, “
A Numerical Study of Three-Dimensional Roll Cells Within Rigid Boundaries
,”
ASME J. Heat Transfer
,
101
(
2
), pp.
233
237
.
21.
Choi
,
H.
, and
Moin
,
P.
,
1994
, “
Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow
,”
J. Comput. Phys.
,
113
(
1
), pp.
1
4
.
22.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed-Boundary Finite Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
(
1
), pp.
132
150
.
23.
Kim
,
J.
, and
Choi
,
H.
,
2004
, “
An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries
,”
KSME Int. J.
,
18
(
6
), pp.
1026
1035
.
24.
Park
,
Y. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2012
, “
Natural Convection in Square Enclosure With Hot and Cold Cylinders at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7911
7925
.
25.
Korenaga
,
J.
, and
Jordan
,
T. H.
,
2001
, “
Effects of Vertical Boundaries on Infinite Prandtl Number Thermal Convection
,”
Geophys. J. Int.
,
147
(
3
), pp.
639
659
.
26.
Maystrenko
,
A.
,
Resagk
,
C.
, and
Thess
,
A.
,
2007
, “
Structure of the Thermal Boundary Layer for Turbulent Rayleigh–Bénard Convection of Air in a Long Rectangular Enclosure
,”
Phys. Rev. E
,
75
, p.
066303
.
27.
Kaczorowski
,
M.
, and
Wagner
,
C.
,
2009
, “
Analysis of the Thermal Plumes in Turbulent Rayleigh–Bénard Convection Based on Well-Resolved Numerical Simulations
,”
J. Fluid Mech.
,
618
, pp.
89
112
.
28.
Jakob
,
M.
,
1949
,
Heat Transfer
, Vol.
1
,
Wiley
,
New York
.
29.
Wagner
,
S.
, and
Shishkina
,
O.
,
2013
, “
Aspect-Ratio Dependency of Rayleigh–Bénard Convection in Box-Shaped Containers
,”
Phys. Fluids
,
25
(
8
), p.
085110
.
30.
Fiscaletti
,
D.
,
Angeli
,
D.
,
Tarozzi
,
L.
, and
Barozzi
,
G. S.
,
2013
, “
Buoyancy-Induced Transitional Flows Around an Enclosed Horizontal Cylinder: An Experiment
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
619
631
.
31.
Desrayaud
,
G.
, and
Lauriat
,
G.
,
1993
, “
Unsteady Confined Buoyant Plumes
,”
J. Fluid Mech.
,
252
, pp.
617
646
.
32.
Belmonte
,
A.
,
Tilgner
,
A.
, and
Libchaber
,
A.
,
1994
, “
Temperature and Velocity Boundary Layers in Turbulent Convection
,”
Phys. Rev. E
,
50
(
1
), pp.
269
279
.
You do not currently have access to this content.